AN ABSOLUTELY FABULOUS LESSON TO TEACH!!!!

Pythagoras Application

Apparatus: (a shoe box is invaluable!) FOR TEACHER TO TEACH.
Ask this question: \quad Suppose a spider is at \mathbf{A} (the bottom corner of the room). If it wants to crawl to the opposite corner \mathbf{R},
 what is the shortest distance?

Most people will say "Go straight from \mathbf{A} to \mathbf{C}, then vertically up to R".

(Some may suggest \mathbf{A} to \mathbf{P}, then across the ceiling to R - but this is just the same distance).

Now calculate this distance carefully:

BUT THIS IS NOT THE SHORTEST DISTANCE!

Using the shoe box, cut sides $\mathbf{P A}, \mathbf{S D}, \mathbf{Q B}$ and $\mathbf{R C}$ so that it can lie out flat.

Notice \mathbf{R} has actually split into two separate points, \mathbf{R}_{1} and $\mathbf{R}_{\mathbf{2}}$.

The shortest distance from \mathbf{A} to \mathbf{R} is a straight line....

We will work out $\mathbf{A} \mathbf{R}_{\mathbf{1}}$ and $\mathbf{A} \mathbf{R}_{\mathbf{2}}$ separately.

In $\triangle \mathbf{A B R}_{1}$:

$$
\begin{aligned}
x^{2} & =(\mathbf{A B})^{2}+\left(\mathbf{B R}_{1}\right)^{2} \\
& =4^{2}+5^{2} \\
& =16+25 \\
& =41 \\
x & \approx 6.4 \mathrm{~m}
\end{aligned}
$$

In $\Delta \mathbf{A B R}_{\mathbf{2}}$:

$$
\begin{aligned}
\boldsymbol{y}^{2} & =(\mathbf{A Q})^{2}+\left(\mathbf{Q R}_{2}\right)^{2} \\
& =6^{2}+3^{2} \\
& =36+9 \\
& =45 \\
y & \approx 6.7 \mathrm{~m}
\end{aligned}
$$

Both these are shorter than 7 m (our previous answer).

So the shortest distance is as shown on this diagram:

You should demonstrate this by showing the approximate position along the wall of the classroom (some students still won't believe you).

Extension:

1) Better pupils could find the position of \mathbf{T} by similar triangles.

$$
\begin{aligned}
& -\frac{z}{4}=-\frac{3}{5} \\
& z=-\frac{12}{5} \\
& z=2.4 \mathrm{~m}
\end{aligned}
$$

2) Find the shortest path of a flying insect ($\mathbf{A R}$), using $\Delta \mathbf{A C R}$

$$
\begin{aligned}
v^{2} & =5^{2}+2^{2} \\
& =25+4 \\
& =29 \\
v & \approx 5.4 \mathrm{~m}
\end{aligned}
$$

