## INTRIGUING CONTINUED FRACTIONS.

I was thinking about a problem in an Eton Senior Mathematics
Competition which asked to find the value in surd form of this continued fraction:
1.

$$
\frac{1}{6+\frac{1}{6+\frac{1}{6+\frac{1}{6+\frac{1}{6+\ldots \ldots . .}}}}}
$$

We can put $\boldsymbol{x}=\frac{1}{6+\boldsymbol{x}}$

$$
\begin{aligned}
\text { so } x(6+x) & =1 \\
x^{2}+6 x & =1 \\
x^{2}+6 x+9 & =9+1 \\
(x+3)^{2} & =10
\end{aligned}
$$

so $\boldsymbol{x}=-\mathbf{3} \pm \sqrt{10}$ (and neglecting the negative solution)
in this case $\boldsymbol{x}=\mathbf{- 3}+\sqrt{10}$
2. The general case would be:

$$
x=\frac{a}{b+\frac{a}{b+\frac{a}{b+\ldots}}}
$$

so

$$
x=\frac{a}{b+x}
$$

giving us the quadratic equation :

$$
x^{2}+b x-a=0
$$

We SHOULD be able to make an equation like this to have IRRATIONAL or even UNREAL SOLUTIONS!
3. If we choose $a=15$ and $b=2$

$$
x=\frac{15}{2+\frac{15}{2+\frac{15}{2+\ldots}}}
$$

we get :

$$
x=\frac{15}{2+x}
$$

so $x^{2}+2 x-15=0$
and $\quad(x-3)(x+5)=0$
so $x=3$ and obviously not -5
4. Now here is an interesting thought, if we choose $\boldsymbol{a}=-\mathbf{2}$ and $\boldsymbol{b}=\mathbf{2}$

$$
x=\frac{-2}{2-\frac{2}{2-\frac{2}{2-\ldots \ldots .}}}
$$

we get the equation : $\quad x=\frac{-2}{2+x}$
producing $x^{2}+2 x+2=0$

$$
\begin{array}{ll}
x^{2}+2 x & =-2 \\
x^{2}+2 x+1 & =1-2 \\
(x+1)^{2} & =-1
\end{array}
$$

$$
\text { so } x=-1+i \text { or }-1-i
$$

(It is not quite so obvious whether to neglect one of these solutions.)
5. Now consider the case where $\boldsymbol{a}=\mathbf{2}$ and $\boldsymbol{b}=\mathbf{0}$

$$
\begin{array}{ll}
x=\frac{2}{0+\frac{2}{0+\frac{2}{0+\frac{2}{0}}}} & \text { or } x=2 \div(2 \div(2 \div(2 \div(2 \div(\ldots \cdot \\
& \text { so } x=\frac{2}{x}
\end{array}
$$

$$
\begin{aligned}
& \text { leading to } x^{2}=2 \text { and } x= \pm 2 \\
& \text { so } \quad x= \pm \sqrt{ } 2 \quad \text { I suppose we say } x=+\sqrt{2}
\end{aligned}
$$

Note: I think alarm bells should start to ring here because if we had a finite EVEN number of 2 's such as $2 \div(2 \div(2 \div(2)))$ it equals 1 but if we had a finite ODD number of 2 's such as $2 \div(2 \div(2))$ it equals 2 .
6. An even more alarming case is when $\boldsymbol{a}=-1$ and $\boldsymbol{b}=\mathbf{0}$ producing:

$$
\begin{array}{cc}
x=\frac{-1}{0-\frac{1}{0-\frac{1}{0-\frac{1}{0-\ldots}}}} \quad \text { or } x=-1 \div(-1 \div(-1 \div(-1 \div(-1 \div(\ldots \cdots \\
\text { so } x=\frac{-1}{x}
\end{array}
$$

$$
\begin{aligned}
& \text { leading to } x^{2}=-1 \text { and } x= \pm i \\
& \text { and } x=i \text { or }-i
\end{aligned}
$$

## HOW ON EARTH CAN AN ARITHMETIC PROCESS INVOLVING REAL NUMBERS WITH NO SQUARE ROOT PROCESS BECOME A COMPLEX NUMBER?

Note:
If we had a finite even number such as $-1 \div(-1 \div(-1 \div(-1)))$ it equals +1 If we had a finite odd number such as $-1 \div(-1 \div(-1))$ it equals -1

## CONTINUED FRACTIONS CONTINUED! A REVELATION!!!!!!!

If INFINITE continued fractions are defined as the limit of FINITE continued fractions:
i.e. $x=\frac{a}{b \quad+\frac{a}{b+\frac{a}{b+\ldots}}}$

$$
\text { then } x=\lim _{n \rightarrow \infty}\left(c_{n}\right)
$$

where $c_{1}=\frac{a}{b} \quad c_{2}=\frac{a}{b+\underline{a}} \quad c_{3}=\frac{a}{b+\underline{a}}$
..... then clearly this requires that $\boldsymbol{b} \neq \mathbf{0}$ (from the equation for $c_{1}$ )

So this explains why, in questions 5 and 6 above, the algebraic method:

$$
\begin{aligned}
x & =\frac{a}{b+\frac{a}{b+\frac{a}{b+\ldots}}} \\
\text { so } \quad x & =\frac{a}{b+x}
\end{aligned}
$$

giving us the quadratic equation :

$$
x^{2}+b x-a=0
$$

