INTRIGUING CONTINUED FRACTIONS.

I was thinking about a problem in an Eton Senior Mathematics Competition which asked to find the value in surd form of this continued fraction:

fraction: 1. $\frac{1}{6 + \frac{1}{6} + \frac$

$$x = \underline{a}$$

$$b + \underline{a}$$

$$b + \underline{a}$$

$$b + \underline{a}$$

$$b + \dots$$

so
$$x = \frac{a}{b+x}$$

giving us the quadratic equation :

$$x^2 + bx - a = 0$$

We <u>SHOULD</u> be able to make an equation like this to have IRRATIONAL or even UNREAL SOLUTIONS!

3. If we choose a = 15 and b = 2

$$x = \frac{15}{2 + \frac{15}{2 + \frac{15}{2 + \dots}}}$$

we get: $x = \frac{15}{2 + x}$ so $x^{2} + 2x - 15 = 0$ and (x-3)(x+5) = 0so x = 3 and obviously not -5

4. Now here is an interesting thought, if we choose a = -2 and b = 2

$$x = \frac{-2}{2 - \frac{2}{2 - \frac{2}{$$

we get the equation : $x = \frac{-2}{2 + x}$

producing $x^2 + 2x + 2 = 0$ $x^2 + 2x = -2$ $x^2 + 2x + 1 = 1-2$ $(x+1)^2 = -1$

so x = -1 + i or -1 - i(It is not quite so obvious whether to neglect one of these solutions.) 5. Now consider the case where a = 2 and b = 0

$$x = 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0 + 2$$

$$0$$

leading to $x^2 = 2$ and $x = \pm 2$ so $x = \pm \sqrt{2}$ I suppose we say $x = \pm \sqrt{2}$

Note: I think alarm bells should start to ring here because if we had a finite **EVEN** number of 2's such as $2 \div (2 \div (2))$ it equals 1 but if we had a finite ODD number of 2's such as $2 \div (2 \div (2))$ it equals 2.

6. An even more alarming case is when a = -1 and b = 0 producing:

leading to $x^2 = -1$ and $x = \pm i$ and x = i or -i

HOW ON EARTH CAN AN ARITHMETIC PROCESS INVOLVING REAL NUMBERS WITH NO SQUARE ROOT PROCESS BECOME A COMPLEX NUMBER?

Note:

If we had a finite even number such as $-1 \div (-1 \div (-1))$ it equals +1If we had a finite odd number such as $-1 \div (-1 \div (-1))$ it equals -1

.....most intriguing!!!

CONTINUED FRACTIONS CONTINUED! A REVELATION!!!!!!!

If INFINITE continued fractions are defined as the limit of FINITE continued fractions:

i.e.
$$x = \underline{a}$$

 $b + \underline{a}$
 $b + \underline{a}$
 $b + \underline{a}$

then $x = \lim_{n \to \infty} (c_n)$

where $c_1 = \underline{a}$ $c_2 = \underline{a}$ $c_3 = \underline{a}$ $b + \underline{a}$ $b + \underline{a}$ b $b + \underline{a}$ b

..... then clearly this requires that $b \neq 0$ (from the equation for c_1)

So this explains why, in questions 5 and 6 above, the algebraic method:

$$x = \frac{a}{b + \frac{a}{b + \frac{a}{b + \frac{a}{b + \dots}}}}$$

so
$$x = \frac{a}{b + x}$$

giving us the quadratic equation :

$$x^2 + bx - a = 0$$

....is not correct because THE LIMITS DO NOT EXIST.