<u>SUPERB INVESTIGATION SUITABLE AT MANY LEVELS.</u> (Teacher's guide)

1. Consider a piece of string 40 cm long.

(a) If we make it into a square its area is obviously $10 \times 10 = 100 \text{ cm}^2$

(b) If we cut the string into two pieces 4 cm and 36 cm and form two squares find the total area.

(c) If we cut the string into two pieces 8 cm and 32 cm and form two squares find the total area.

Total area = $2 \times 2 + 8 \times 8 = 68 \text{ cm}^2$

(d) Now cut the string into pieces 12 cm and 28 cm. Total area = $3 \times 3 + 7 \times 7 = 58 \text{ cm}^2$

1 st piece	2 nd piece	Area 1 st	Area 2 nd	TOTAL
		square	square	AREA
4	36	1	81	82
8	32	4	64	68
12	28	9	49	58
16	24	16	36	52
20	20	25	25	50
24	16	36	16	52
28	12	49	9	58
32	8	64	4	68
36	4	81	1	82

(f) If the first piece is length x, the other length is 40 - xFind a formula for the total area:

$$A = \left(\frac{x}{4}\right)^{2} + \left(\frac{(40-x)}{4}\right)^{2}$$

= $\frac{x^{2} + 1600 - 80x + x^{2}}{16}$
= $\frac{2x^{2} - 80x + 1600}{16}$ or $\frac{x^{2}}{8} - 5x + 100$

Draw a graph of this (possibly using Autograph or a Graphics Calculator)

- 2. Consider a piece of string 40 cm long.(HARDER)
 - (a) If we make it into a CIRCLE we need to find the RADIUS, in order to calculate its area.

Students need to know C = $2\pi r$ so that $2\pi r = 40$ $\pi r = 20$ $r = 20 \approx 6.366$ π Area = $\pi r^2 = \pi \times (6.366)^2 \approx 127.3 \text{ cm}^2$

(b) If we cut the string into two pieces 4 cm and 36 cm and form two circles find the total area.

Radius of 1st circle = $\underline{2} \approx 0.6366$ π Area of 1st circle = $\pi \times (0.6366)^2$ = 1.273 cm²
Radius of 2nd circle = $\underline{18} \approx 5.73$ Area of 2nd circle = $\pi \times (5.73)^2$ = 103.1 cm²

Total area = 104.4 cm^2

(c) If the first piece is length x, the other length is (40 - x)Find a formula for the total area: (*Quite complicated for students!*)

<u>1st Circle</u>	2^{nd} Circle
$Circumference = x = 2\pi r$	$Circumference = 40 - x = 2\pi r$
so $r = \underline{x}$	so $r = 40 - x$
2π	2π
$Area = \pi r^2 = \pi \frac{\times x^2}{4 \pi^2} = \frac{x^2}{4 \pi}$	Area = $\pi r^2 = \pi \frac{\times (40 - x)^2}{4 \pi^2} = \frac{(40 - x)^2}{4 \pi}$
Total Area = $x^2 + (40 - x)^2$	
4π 4π	

If we draw this graph we do not have to go through lots of x values to get to the minimum area.

Point out that this is a parabola. (The right way up type, so it has a minimum value not a maximum.) Notice in particular that the minimum value is A = 63.66 when x = 20.

3. (This is where this investigation has been leading.)

A 40 cm piece of string is cut into 2 pieces.

One piece is made into a CIRCLE and the other is made into a SQUARE. Find the minimum AREA.

Let one piece be of length x and the other is (40 - x)

Let the 1st piece be made into a circle: Circumference = $x = 2\pi r$ so $r = \frac{x}{2\pi}$ Area = $\pi r^2 = \pi \frac{x^2}{4\pi^2} = \frac{x^2}{4\pi}$

The minimum Area is 56.01 cm² when x = 17.6 cm Although we have used a graph program to find this minimum value, this makes a good calculus problem.

Lengths are x and (40 – x). If circumference = x then $2\pi r = x$ so $r = \frac{x}{(2\pi)}$

Total Area =
$$\pi r^2 + (40 - x)^2$$

 16
 $AREA = \frac{\pi x^2}{4\pi^2} + \frac{1600 - 80x + x^2}{16} = \frac{x^2}{4\pi} + 100 - 5x + \frac{x^2}{16}$
 $\frac{d(Area)}{dx} = \frac{x}{2\pi} - 5 + \frac{x}{8} = 0$ for max Area
 $\frac{40 - x}{4}$
 $x(\frac{1}{2\pi} + \frac{1}{8}) = 5$
 $x \approx 0.28415 = 5$
 $x = 17.6$ cm so $r = 2.8$ cm

So Min Area = $\pi \times 2.8^2 + 5.6^2 = 56 \text{ cm}^2$

A nice extension to this would be splitting the string into 2 pieces, making a SQUARE with one piece and an EQUILATERAL TRIANGLE with the other.

If we let each side of the triangle be x then the area could simply be written as $\frac{x \times x \times sin60}{2} = \frac{x^2 \sqrt{3}}{4}$

This leaves (40 - 3x) left for the square so each side $= \frac{40 - 3x}{4}$

The area of the square = $(\frac{40 - 3x)^2}{16} = \frac{1600 - 240x + 9x^2}{16}$

The total area is A = $\frac{x^2 \sqrt{3}}{4} + \frac{1600 - 240x + 9x^2}{16}$

$$\frac{dA}{dx} = \frac{x\sqrt{3}}{2} - \frac{15}{8} + \frac{9x}{8} = 0 \text{ at min area}$$

$$x(\frac{\sqrt{3}}{2} + \frac{9}{8}) = 15$$

$$x \approx 7.53$$

Min A \approx 43.5 cm²

