SUPERB INVESTIGATION SUITABLE AT MANY LEVELS. (Teacher's guide)

1. Consider a piece of string 40 cm long.
(a) If we make it into a square its area is obviously $10 \times 10=100 \mathrm{~cm}^{2}$

(b) If we cut the string into two pieces 4 cm and 36 cm and form two squares find the total area.

Total area $=1+81=82 \mathrm{~cm}^{2}$
(c) If we cut the string into two pieces 8 cm and 32 cm and form two squares find the total area.

$$
\text { Total area }=2 \times 2+8 \times 8=68 \mathrm{~cm}^{2}
$$

(d) Now cut the string into pieces 12 cm and 28 cm .

Total area $=3 \times 3+7 \times 7=58 \mathrm{~cm}^{2}$
(e) Make a table of values

$1^{\text {st }}$ piece	$2^{\text {nd }}$ piece	Area 1 square	Area 2 sqd square	TOTAL AREA
4	36	1	81	82
8	32	4	64	68
12	28	9	49	58
16	24	16	36	52
20	20	25	25	50
24	16	36	16	52
28	12	49	9	58
32	8	64	4	68
36	4	81	1	82

(f) If the first piece is length \boldsymbol{x}, the other length is $\mathbf{4 0} \boldsymbol{- x}$

Find a formula for the total area:

$$
\begin{aligned}
A & =\left(\frac{x}{4}\right)^{2}+\left(\frac{(40-x)}{4}\right)^{2} \\
& =\frac{x^{2}+1600-80 x+x^{2}}{16} \\
& =\frac{2 x^{2}-80 x+1600}{16} \text { or } \frac{x^{2}-5 x+100}{8}
\end{aligned}
$$

Draw a graph of this (possibly using Autograph or a Graphics Calculator)

Point out that this is a parabola. (The "right-way- up" type, so it has a minimum value not a maximum.)
Notice in particular that the minimum value is $\mathrm{A}=50$ when $x=20$.
2. Consider a piece of string 40 cm long.(HARDER)
(a) If we make it into a CIRCLE we need to find the RADIUS, in order to calculate its area.

$$
\begin{aligned}
& \text { Students need to know } C=2 \pi r \\
& \text { so that } 2 \pi r=40 \\
& \qquad \begin{aligned}
\pi r & =20 \\
r & =\frac{20}{\pi} \approx 6.366
\end{aligned}
\end{aligned}
$$

$$
\text { Area }=\pi r^{2}=\pi \times(6.366)^{2} \approx 127.3 \mathrm{~cm}^{2}
$$

(b) If we cut the string into two pieces 4 cm and 36 cm and form two circles find the total area.

Radius of $1^{\text {st }}$ circle $=\frac{2}{\pi} \approx 0.6366$
Area of $1^{\text {st }}$ circle $=\pi \times(0.6366)^{2}$

$$
=1.273 \mathrm{~cm}^{2}
$$

Radius of $2^{\text {nd }}$ circle $=\frac{18}{\pi} \approx 5.73$
Area of $2^{\text {nd }}$ circle $=\pi \times(5.73)^{2}$

$$
=103.1 \mathrm{~cm}^{2}
$$

Total area $=104.4 \mathrm{~cm}^{2}$
(c) If the first piece is length \boldsymbol{x}, the other length is $(\mathbf{4 0}-\boldsymbol{x})$

Find a formula for the total area: (Quite complicated for students!)

$\frac{1^{\text {st }} \text { Circle }}{\text { Circumference }=x=2 \pi r}$	$\frac{2^{n d} \text { Circle }}{\text { Circumference }=40-x=2 \pi r}$
so $r=\frac{x}{2 \pi}$	so $r=\frac{40-x}{2 \pi}$
Area $=\pi r^{2}=\pi \times \frac{x^{2}}{4 \pi^{2}}=\frac{x^{2}}{4 \pi}$	Area $=\pi r^{2}=\pi \frac{\times(40-x)^{2}}{4 \pi^{2}}=\frac{(40-x)^{2}}{4 \pi}$

Total Area $=\frac{x^{2}}{4 \pi}+\frac{(40-x)^{2}}{4 \pi}$
If we draw this graph we do not have to go through lots of \boldsymbol{x} values to get to the minimum area.

Point out that this is a parabola. (The right way up type, so it has a minimum value not a maximum.)
Notice in particular that the minimum value is $\mathrm{A}=63.66$ when $\boldsymbol{x}=20$.

3. (This is where this investigation has been leading.)

A 40 cm piece of string is cut into 2 pieces.
One piece is made into a CIRCLE and the other is made into a SQUARE.
Find the minimum AREA.
Let one piece be of length \boldsymbol{x} and the other is $(40-\boldsymbol{x})$
Let the $1^{\text {st }}$ piece be made into a circle:
Circumference $=x=2 \pi r$
so $r=\frac{x}{2 \pi}$
Area $=\pi r^{2}=\pi \frac{\times x^{2}}{4 \pi^{2}}=\frac{x^{2}}{4 \pi}$

Let the $2^{\text {nd }}$ piece be made into the square:
Each side will be $\frac{40-x}{4}$
So the area is $\left.\frac{(40-x}{16}\right)^{2}$
Now we will draw the graph Area $\left.y=\frac{x^{2}}{4 \pi}+\frac{(40-x}{16}\right)^{2}$

The minimum Area is $56.01 \mathrm{~cm}^{2}$ when $\boldsymbol{x}=17.6 \mathrm{~cm}$
Although we have used a graph program to find this minimum value, this makes a good calculus problem.
Lengths are x and $(40-x)$. If circumference $=x$ then $2 \pi r=x$ so $r=\underline{x}$ (2π)
Total Area $=\pi r^{2}+\underline{(40-x)^{2}}$

$$
A R E A=\frac{\pi x^{2}}{4 \pi^{2}}+\frac{1600-80 x+x^{2}}{16}=\frac{x^{2}}{4 \pi}+100-5 x+\frac{x^{2}}{16}
$$

$$
\frac{40-x}{4}
$$

$$
\frac{d(\text { Area })}{d x}=\frac{x}{2 \pi}-5+\frac{x}{8}=0 \text { for max Area }
$$

$$
x\left(\frac{1}{2 \pi}+\frac{1}{8}\right)=5
$$

$$
x \times 0.28415=5
$$

$$
x=17.6 \mathrm{~cm} \text { so } r=2.8 \mathrm{~cm}
$$

So Min Area $=\pi \times 2.8^{2}+5.6^{2}=56 \mathrm{~cm}^{2}$

A nice extension to this would be splitting the string into 2 pieces, making a SQUARE with one piece and an EQUILATERAL TRIANGLE with the other.

If we let each side of the triangle be \boldsymbol{x} then the area could simply be written as $\frac{x \times x \times \sin 60}{2}=\frac{x^{2} \sqrt{ } 3}{4}$

This leaves $(40-3 x)$ left for the square so each side $=\frac{40-3 x}{4}$
The area of the square $=\frac{(40-3 x)^{2}}{16}=\frac{1600-240 x+9 x^{2}}{16}$
The total area is $A=\frac{x^{2} \sqrt{3}}{4}+\frac{1600-240 x+9 x^{2}}{16}$
$\frac{d A}{d x}=x \frac{\sqrt{ } 3}{2}-15+\frac{9 x}{8}=0$ at min area
$x\left(\frac{\sqrt{ } 3}{2}+\frac{9}{8}\right)=15$
$x \approx 7.53$
$\operatorname{Min} \mathrm{A} \approx 43.5 \mathrm{~cm}^{2}$

