HOW HIGH ABOVE THE EARTH IS A SATELLITE IN STATIONARY ORBIT?

The radius of the Earth $\mathrm{R}=6.37 \times 10^{6}$ metres, Let the mass of the Earth $=\mathrm{M}$ and the mass of the satellite at S be m. The distance of the satellite from the Earth's centre $=r$.
The universal constant of gravitation $=G$
For a mass at the Earth's surface $m g=\frac{G m M}{R^{2}}$

Rearranging, we get $\mathrm{gR}^{2}=\mathrm{GM}$

The force required to keep S in circular orbit is $\underline{\mathrm{mv}^{2}}$ and this must be provided by the gravitational force of $\frac{\mathrm{GmM}}{\mathrm{r}^{2}}$

Therefore $\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{GmM}}{\mathrm{r}^{2}}$
** Rearranging we get $v^{2}=\underset{r}{\mathrm{GM}}=\underset{\mathrm{r}}{\mathrm{gR}^{2}} \quad$ (substituting $g R^{2}=\mathrm{GM}$)
If the satellite rotates at the same rate as the Earth so that it appears to be stationary above a particular place on the equator, then it travels a distance of $2 \pi \mathrm{r}$ metres in 24 hours.

Therefore

$$
\mathrm{v}=\frac{2 \pi \mathrm{r}}{24 \times 60 \times 60}
$$ metres/sec

Substituting in the equation above marked ${ }^{* *}$ we get :

$$
\frac{(2 \pi \mathrm{r})^{2}}{(24 \times 60 \times 60)^{2}}=\frac{\mathrm{g} \mathrm{R}^{2}}{\mathrm{r}}
$$

Rearranging we get $r^{3}=\frac{g R^{2} \times 24^{2} \times 60^{4}}{4 \pi^{2}}$ metres

$$
\text { so } \mathrm{r}=42,200,000 \text { metres }=42,200 \mathrm{Km}
$$

Subtracting the radius of the Earth we get the distance of the satellite from the surface of the Earth is $35,800 \mathrm{Km}$ approximately.

