$\operatorname{DOES} \sqrt{a \times b}=\sqrt{a} \times \sqrt{b}$

It is all about the ORDER in which the calculations are done.
$\sqrt{a \times b}$ means multiply \boldsymbol{a} and \boldsymbol{b} THEN find the square root. $\sqrt{a} \times \sqrt{b}$ means find each square root THEN multiply them.

Sometimes they are not equal!
These examples will show when.
Consider $\sqrt{4} \times \sqrt{9}=2 \times 3=6$
and $\sqrt{(4 \times 9)}=\sqrt{36}=6$
So when both numbers are positive $\sqrt{\boldsymbol{a} \times \boldsymbol{b}}=\sqrt{\boldsymbol{a}} \times \sqrt{\boldsymbol{b}}$

Now consider $\sqrt{4} \times \sqrt{(-9)}=2 \times 3 i=6 i$ and

$$
\sqrt{4 \times(-9)}=\sqrt{-36}=6 i
$$

So when one number is positive and the other is negative $\sqrt{\boldsymbol{a} \times \boldsymbol{b}}=\sqrt{\boldsymbol{a}} \times \sqrt{\boldsymbol{b}}$

Now consider $\sqrt{(-4)} \times \sqrt{(-9)}=2 i \times 3 i=-6$
BUT

$$
\sqrt{(-4) \times(-9)}=\sqrt{36}=+6
$$

So when both numbers are negative $\sqrt{\boldsymbol{a} \times \boldsymbol{b}} \neq \sqrt{\boldsymbol{a}} \times \sqrt{\boldsymbol{b}}$

This is the source of many false proofs for example:

$$
1=\sqrt{+1}=\sqrt{(-1) \times(-1)}=\sqrt{(-1)} \times \sqrt{(-1)}=i \times i=-1
$$

This seems to prove $\mathbf{1}=\mathbf{- 1}$ but the false step is in RED type!

We should also consider if $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

$$
\sqrt{\frac{a}{b}} \text { means "find } \boldsymbol{a} \text { divided by } \boldsymbol{b} \text { first then find the square root" }
$$

while $\frac{\sqrt{a}}{\sqrt{b}}$ means "find the square roots of \boldsymbol{a} and \boldsymbol{b} first then divide them".

Example 1.

| $\sqrt{\frac{64}{16}}=\sqrt{4}=2$ | $\frac{\sqrt{64}}{\sqrt{16}}=\frac{8}{4}=2$ |
| :--- | :--- | :--- |
| | So $\sqrt{\frac{64}{16}}=\frac{\sqrt{64}}{\sqrt{16}}$ |

Example 2.

$\sqrt{\frac{-64}{16}}=\sqrt{-4}=2 i$	$\frac{\sqrt{-64}}{\sqrt{16}}=\frac{8 i}{4}=2 i$
So $\sqrt{\frac{-64}{16}}=\frac{\sqrt{-64}}{\sqrt{16}}$	

Example 3.

| $\sqrt{\frac{64}{-16}}=\sqrt{-4}=\mathbf{2 i} \quad \frac{\sqrt{64}}{\sqrt{-16}}=\frac{8}{4 i}=\frac{8}{4 i} \times \frac{i}{i}=-\mathbf{2 i}$ |
| :---: | :---: |
| So $\sqrt{\frac{64}{-16}} \neq \frac{\sqrt{64}}{\sqrt{-16}}$ |

Example 4.

$$
\begin{aligned}
& \sqrt{\frac{-64}{-16}}=\sqrt{4}=2 \\
& \text { So } \sqrt{\frac{-64}{-16}}=\frac{\sqrt{-64}}{\sqrt{-16}}
\end{aligned}
$$

