I like to arrive at BIDMAS after an investigation of "whether we get the same answer or not when we do operations in different orders".
It would be a great shame to just "give the rule"!
You could use the following as a lesson plan if you wish:

Consider these pairs of questions and see if we get the same answers by changing the order.
1.

or

Clearly, the order did not matter in this case.

We get different answers so the order does matter!

We need to make a rule (or convention) so that we all do the same thing in cases like these above.

```
IF A PROBLEM HAS JUST + OR - OR BOTH, WE MUST START FROM THE LEFT.
```

eg 3.

We obviously do not have to write out all these steps every time because we can do most things mentally.
eg 4.

If we try ANY other order, we will get the wrong answer !

Now consider these pairs of questions:
5.

or

Clearly, the order did not matter in this case.
6. Now consider:
$=$
or

We get different answers so the order does matter !
We need to make a rule (or convention) so that we all do the same thing in cases like these above.

IF A PROBLEM HAS JUST \times OR \div OR BOTH, WE MUST START FROM THE LEFT.

NOW SUPPOSE WE HAVE A MIXTURE OF,,$+- \times, \div$ IN THE SAME PROBLEM!
eg If you buy a packet of cornflakes for $\$ 5$ and 3 cans of beans each costing $\$ 2$
then the cost could be written as $5+3 \times 2$
Clearly we do NOT start from the left here. The correct cost is $5+\mathbf{6}=\$ 11$ If we were to start from the left we would get $8 \times 2=\$ 16$

Basically, + and - are equal importance and if a problem only has $\boldsymbol{+}$ and $\boldsymbol{-}$ then we just start from the left.
Similarly, \times and \div are also of equal importance and if a problem only has \times and \div then we also just start from the left.
BUT if a problem has a combination of,,$+- \times$ or \div we must do the \times and \div before we do the + and - .

$\begin{aligned} \text { eg 10. } & 2 \times 4+3 \\ = & \underbrace{2}+3 \\ = & 11 \end{aligned}$	11. $\begin{aligned} & 5+6 \stackrel{\times}{\sqrt{n}} \\ = & 5+12 \\ = & 17 \end{aligned}$
$\text { 12. } \begin{aligned} & 7 \times 2-9 \\ = & \prod^{7}-9 \\ = & 5 \end{aligned}$	13. $\begin{aligned} & 9-3 \times 2 \\ = & 9-6 \\ = & 3 \end{aligned}$
$\text { 14. } \begin{aligned} & 8 \div 4+2 \\ = & 2+2 \\ = & 4 \end{aligned}$	15. $\begin{aligned} & 8-20 \div \\ = & 8-5 \\ = & 3 \end{aligned}$
$\text { 16. } \begin{aligned} & 9+2 \times 3-4 \\ = & 9+\underbrace{3}_{6}-4 \\ = & 15-4 \\ = & 11 \end{aligned}$	$\text { 17. } \begin{aligned} & 2 \times 3+4 \times 5 \\ = & \curvearrowleft_{6}+\sqrt[𠃌]{20} \\ = & 26 \end{aligned}$
$\text { 18. } \begin{aligned} & 8 \dot{8} 2+5 \times 2 \\ = & 4+\underset{10}{2} \\ = & 14 \end{aligned}$	$\text { 19. } \begin{aligned} & 7+8 \div 2-5 \\ = & 7+4-5 \\ = & 11-5 \\ = & 6 \end{aligned}$

BREAKING THE RULES !

We can do this by using BRACKETS.
The order now is BRACKETS FIRST, then \times and \div, then lastly + and -

1(a) $3+2 \times$
$=3+8$
$=11$
(b) $\begin{aligned} & (3+2) \times 4 \\ = & 5 \times 4\end{aligned}$
$=\quad 20$

$2(\mathrm{a})$	$18-6 \div 3$	(b) $(18-6) \div 3$ $=$ $18-2$	$=12 \div 3$
$=$	$=16$	$=$	4

3(a) $8-3 \times 2$
(b) $(8-3) \times 2$
$=8-6$
$=5 \times 2$
$=2$
$=10$

4 (a) $40 \div(4 \div 2)$	(b) $(40 \div 4) \div 2$ $=40 \div 2$ $=$ $=20$ $10 \div 2$ $=$ $=$

5(a) $\quad(40 \div 4) \times 2$
$=10 \times 2$
$=40 \div 8$
$=20$
$=5$

THE FINAL STEP IS : INDICES

Instead of writing $2 \times 2 \times 2 \times 2 \times 2$ we can just write 2^{5}
So 3^{4} does not equal 3×4 but $3 \times 3 \times 3 \times 3=81$

Things get a little bit confusing here but just do the following:

	$2+10 \times 3^{2}$	first we do indices
$=$	$2+10 \times 9$	now we do \times
$=$	$2+90$	and finally do +
$=$	92	

However in this problem:

```
= (2+4)\times3\mp@subsup{3}{}{2}-5 first we do brackets
= 49.
```

Also note that: $\quad \underline{7+5}$ is the same as though there were brackets $(7+5)$ 9-6

And this means: $(7+5) \div(9-6)=\underline{12}=4$

Putting ALL these ideas together we can make a "word" to help remember them:

B I D M A S

Where B stands for BRACKETS

I stands for INDICES

$\left\{\begin{array}{l}\mathbf{D} \text { stands for DIVISION } \\ \mathbf{M} \text { stands for MULTIPLICATION }\end{array}\right\}$
note: Division is not really BEFORE Multiplication. They have equal priority.
$\left\{\begin{array}{l}\mathbf{A} \text { stands for ADDITION } \\ \mathbf{S} \text { stands for SUBTRACTION }\end{array}\right\}$
note: Addition is not really BEFORE Subtraction.
They also have equal priority.

Sometimes the BIDMAS order does not seem to hold rigidly:
eg

$$
\begin{aligned}
& \left(2^{3}-5\right)^{2} \quad \text { because we can't do the Brackets before we do the Index } 2^{3} \\
= & (8-5)^{2} \\
= & \left(\begin{array}{c}
3
\end{array}\right)^{2} \\
= & 9
\end{aligned}
$$

