THE WORLD'S HARDEST EASY GEOMETRY QUESTION.

Firstly we find all the obvious angles:

Construct BD so that angle $BDC = 80^{\circ}$

Angles BCD and BDC are both 80° so triangle BCD is isosceles and BC = BD

ALSO, since angles BCF and BFC are both 50° then triangle BCF is also isosceles so BC = BF

Now we have BC = BD = BF

NOW we construct DF

Since BD = BF then triangle BDF is also isosceles and since angle $DBF = 60^{\circ}$ the "base" angles are also 60° which actually make triangle DBF not only isosceles but EQUILATERAL so **DF also** equals BC = BD = BF

NOW consider triangle BDE

Angles DBE and DEB are both 40° so triangle BDE is also isosceles and **BD** = **DE** Finally consider triangle DEF

Since DE = DF the triangle is isosceles and since angle $D = 40^{\circ}$ the base angles DFE and DEF are both 70°

But angle DEF = x + 40 = 70So $x = 30^{\circ}$

ALTERNATIVELY:

If we draw the circle centre D radius DE = DF = DBwe see that the "angle at the centre" $BDF = 60^{\circ}$ and the "angle at the circumference" BEF is *x* which must be $\frac{1}{2}$ of $60 = 30^{\circ}$

