THE WORLD'S HARDEST EASY GEOMETRY QUESTION.

This is the basic question. Find angle \boldsymbol{x}

Firstly we find all the obvious angles:

Construct BD so that angle $\mathrm{BDC}=80^{\circ}$

Angles BCD and BDC are both 80° so triangle BCD is isosceles and $\mathrm{BC}=\mathrm{BD}$

ALSO, since angles BCF and BFC are both 50° then triangle BCF is also isosceles so $\mathrm{BC}=\mathrm{BF}$

Now we have $B C=B D=B F$

NOW we construct DF

Since $\mathrm{BD}=\mathrm{BF}$ then triangle BDF is also isosceles and since angle $\mathrm{DBF}=60^{\circ}$ the "base" angles are also 60° which actually make triangle DBF not only isosceles but EQUILATERAL so DF also equals $\mathbf{B C}=\mathrm{BD}=\mathrm{BF}$

NOW consider triangle BDE
Angles DBE and DEB are both 40° so triangle BDE is also isosceles and $\mathbf{B D}=\mathrm{DE}$

Finally consider triangle DEF

Since $\mathrm{DE}=\mathrm{DF}$ the triangle is isosceles and since angle $\mathrm{D}=40^{\circ}$ the base angles DFE and DEF are both 70°

But angle DEF $=x+40=70$
So $x=30^{0}$

ALTERNATIVELY:

If we draw the circle centre D radius $\mathrm{DE}=\mathrm{DF}=\mathrm{DB}$ we see that the "angle at the centre" $\mathrm{BDF}=60^{\circ}$ and the "angle at the circumference" BEF is \boldsymbol{x} which must be $1 / 2$ of $60=30^{\circ}$

