PRIMARY VALUES OF INDICES.

We know that $\sqrt[3]{8}$ or $8^{\frac{1}{3}}=2$
Did YOU know that $\sqrt[3]{-8}$ or $(-8)^{\frac{1}{3}} \neq-2$
We say that $x^{2}=9$ has two solutions namely 3 and -3
But we also say $\sqrt{9}=3$ but NOT $\sqrt{9}=-3$
Similarly, the equation $x^{4}=1$ has FOUR solutions, namely $1, i,-1$ and $-i$ But we say that $\sqrt[4]{1}=1$ but NOT $\sqrt[4]{1}=1, i,-1$ and $-i$

When we find $\sqrt[2]{x}$ or $\sqrt[3]{x}$ or $\sqrt[4]{x}$ or $\sqrt[5]{x}$ etc. there is only ONE answer for each root and it is called the PRIMARY ROOT which is the $1^{\text {st }}$ root found when solving $x^{n}=b$ using De Moivres Theorem.

Consider the equation $x^{3}=8$ which we know has 3 solutions not just the obvious solution $x=2$
If we use De Moivre's Theorem to solve this we proceed as follows:

$$
\begin{aligned}
& x^{3}=8 \\
& (r \operatorname{cis}(\theta))^{3}=8 \\
& r^{3} \operatorname{cis}(3 \theta)=8 \operatorname{cis}(0+360 n) \\
& r^{3}=8 \text { and } 3 \theta=360 n \\
& r=2 \quad \text { and } \quad \theta=0+120 n=0^{0}, 120^{0}, 240^{0} \\
& x_{1}=2 \operatorname{cis}(0)=2 \\
& x_{2}=2 \operatorname{cis}(120)=-1+i \sqrt{ } 3 \\
& x_{3}=2 \operatorname{cis}(240)=-1-i \sqrt{ } 3
\end{aligned}
$$

I will refer to x_{1} as the PRIMARY SOLUTION.

The other 2 solutions are generated from this solution by adding multiples of 120° to the "argument".
So we say that $\sqrt[3]{8}$ or $8^{\frac{1}{3}}=2$

Now consider $x^{3}=-8$
It "seems" we can just say $x=-2$ because $(-2)^{3}=-8$ but -2 is not the Primary Solution!
Using De Moivre's theorem again:
$x^{3}=-8$
$(r \operatorname{cis}(\theta))^{3}=-8$
$r^{3} c i s(3 \theta)=8 c i s(180+360 n)$
$r^{3}=8$ and $3 \theta=180+360 n$
$r=2$ and $\theta=60+120 n=60^{\circ}, 180^{\circ}, 300^{\circ}$
$x_{1}=2 c i s(60)=1+i \sqrt{ } 3$
$x_{2}=2 c i s(180)=-2$
$x_{3}=2 c i s(240)=1-i \sqrt{ } 3$
The Primary Solution is $x_{1}=1+i \sqrt{ } 3 \quad \approx 1+1.732 i$
So $\sqrt[3]{-8}$ or $(-8)^{\frac{1}{3}}=1+1.732 i$ and NOT -2 !
The other 2 solutions are generated from this solution by adding multiples of 120° to the "argument".

NB If we type $\sqrt[3]{-8}$ or $(-8)^{\frac{1}{3}}$ on the graphics calculator we get $\boldsymbol{1}+1.732 i$ and not -2

Similarly, let us consider $x^{4}=1$

$$
\begin{aligned}
& (r \operatorname{cis}(\theta))^{4}=1 \\
& r^{4} \operatorname{cis}(4 \theta)=1 \operatorname{cis}(0+360 n) \\
& r^{4}=1 \text { and } 4 \theta=360 n \\
& r=1 \quad \text { and } \quad \theta=0^{0}, 90^{0}, 180^{0}, 270^{0} \\
& x_{1}=\operatorname{cis}(0)=1 \\
& x_{2}=\operatorname{cis}(90)=i \\
& x_{3}=\operatorname{cis}(180)=-1 \\
& x_{4}=\operatorname{cis}(270)=-i
\end{aligned}
$$

The Primary Solution is $x_{1}=1$
So that $\sqrt[4]{1}$ or $1^{\frac{1}{4}}=1$
The other 3 solutions are generated from this solution by adding multiples of 90^{0} to the "argument".

Compare this with $x^{4}=-1$

$$
\begin{aligned}
& (r \operatorname{cis}(\theta))^{4}=-1 \\
& r^{4} \operatorname{cis}(4 \theta)=1 \operatorname{cis}(180+360 n) \\
& r^{4}=1 \quad \text { and } \quad 4 \theta=180+360 n \\
& r=1 \quad \text { and } \quad \theta=45+90 n=45^{0}, 135^{0}, 225^{0}, 315^{0} \\
& x_{1}=\operatorname{cis}(0)=\cos 45+i \sin 45=0.707+i 0.707 \\
& x_{2}=\operatorname{cis}(90)=\cos 135+i \sin 135=-0.707+i 0.707 \\
& x_{3}=\operatorname{cis}(180)=\cos 225+i \sin 225=-0.707-i 0.707 \\
& x_{4}=\operatorname{cis}(270)=\cos 315+i \sin 315=0.707-i 0.707
\end{aligned}
$$

> Notice that none of these solutions is a real number!

The Primary Solution is $x_{1}=0.707+i 0.707$
The other 3 solutions are generated from this solution by adding multiples of 90^{0} to the "argument".

So that $\sqrt[4]{-1}$ or $(-1)^{\frac{1}{4}}=0.707+i 0.707$ which is verified by the graphics calculator.

Consider $x^{5}=32$

$(r \operatorname{cis}(\theta))^{5}=32$
$r^{5} \operatorname{cis}(5 \theta)=32 \operatorname{cis}(0+360 n)$
$r^{5}=32$ and $5 \theta=360 n$
$r=2$ and $\theta=72 n=0^{0}, 72^{\circ}, 144^{0}, 216^{\circ}, 288^{\circ}$
$x_{1}=2 \operatorname{cis}(0)=2 \cos 0+2 i \sin 0=2$
$x_{2}=2 \operatorname{cis}(72)=2 \cos 72+2 i \sin 72=0.62+1.9 i$
$x_{3}=2 \operatorname{cis}(144)=2 \cos 144+2 i \sin 144=-1.62+1.18 i$
$x_{4}=2 \operatorname{cis}(216)=2 \cos 216+2 i \sin 216=-1.62-1.18$
$x_{5}=2 \operatorname{cis}(288)=2 \cos 288+2 i \sin 288=0.61-1.9 i$

The Primary Solution is $x_{1}=2$

The other 4 solutions are generated from this solution by adding multiples of 72^{0} to the "argument".
So that $\sqrt[5]{32}$ or $32^{\frac{1}{5}}=2$ which is verified by the graphics calculator.

Consider $x^{5}=-32$

```
\((r \operatorname{cis}(\theta))^{5}=-32\)
\(r^{5} \operatorname{cis}(5 \theta)=32 \operatorname{cis}(180+360 n)\)
\(r^{5}=32\) and \(5 \theta=180+360 n\)
\(r=2\) and \(\theta=36+72 n=36^{\circ}, 108^{0}, 180^{\circ}, 252^{\circ}, 324^{0}\)
\(x_{1}=2 \operatorname{cis}(36)=2 \cos 36+2 i \sin 36=1.62+1.18 i\)
\(x_{2}=2 \operatorname{cis}(108)=2 \cos 108+2 i \sin 108=-0.62+1.9 i\)
\(x_{3}=2 \operatorname{cis}(180)=2 \cos 180+2 i \sin 180=-2\)
\(x_{4}=2 \operatorname{cis}(252)=2 \cos 252+2 i \sin 252=-0.62-1.9\)
\(x_{5}=2 \operatorname{cis}(324)=2 \cos 324+2 i \sin 324=1.62-1.18 i\)
```

The Primary Solution is $x_{1}=1.62+1.18 i$
The other 4 solutions are generated from this solution by adding multiples of 72^{0} to the "argument".

So that $\sqrt[5]{-32}$ or $(-32)^{\frac{1}{5}}=1.62+1.18 i$ which is verified by the graphics calculator.

If we go right back to $x^{2}=9$
$(r \operatorname{cis}(\theta))^{2}=9$
$r^{2} \operatorname{cis}(2 \theta)=9 \operatorname{cis}(0+360 n)$
$r^{2}=9$ and $2 \theta=360 n$
$r=3$ and $\theta=0^{0}, 180^{\circ}$
$x_{1}=3 \operatorname{cis}(0)=3$
$x_{2}=3 \operatorname{cis}(180)=-3$
so $\sqrt{ } 9=3$ because it is the primary solution, not because it is "a positive number" nor any other reason.

The equation $y^{5}=-32$ is not the same as $y=\sqrt[5]{-32}$
The equation $y^{5}=-32$ has 5 solutions
but $y=\sqrt[5]{-32}$ only has 1 solution (the primary solution)
Similarly:
$y^{2}=9$ has 2 solutions $y=+3$ or -3
but $y=9^{1 / 2}$ only has 1 solution $y=+3$

