Converting between Fahrenheit and Celsius temperature scales Mentally.

On a recent trip to the USA I found it frustrating mentally converting the temperatures from the Fahrenheit scale to the more familiar Celsius scale. There is no problem if you have a calculator on hand but the formula can be awkward when trying to work out a quick answer.

Basically, the freezing point of water in Fahrenheit is $32^{\circ} \mathrm{F}$ and in Celsius it is $0^{0} \mathrm{C}$
The boiling point of water in Fahrenheit is $212^{\circ} \mathrm{F}$ and in Celsius it is $100^{\circ} \mathrm{C}$. The linear graph is as follows:

The gradient of this line is $\frac{180}{100}$ or $\frac{9}{5}$ or 1.8
The " y " intercept is 32
If we want to change from degrees C to degrees F , the most convenient formula is:

$$
\mathrm{F}=1.8 \mathrm{C}+32 \text { or } \mathrm{F}=\frac{9}{5} \mathrm{C}+32
$$

If we want to change from degrees F to degrees C it is more convenient to transpose the formula to the form:
$\mathrm{C}=5 \times \frac{(\mathrm{F}-32)}{9}$
On my trip, a typical temperature in Arizona was $35^{\circ} \mathrm{C}$ which amounts to $\mathrm{F}=\frac{9 \times 35}{5} 35+32=95$ in Fahrenheit.
The temperature range was often between $25^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$ which is $77^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}$

If the temperature were $39^{\circ} \mathrm{C}$ the calculation would be $\underline{\mathbf{9} \times \mathbf{3 9}}+\mathbf{3 2}$
which is a little awkward to do mentally.
However if we notice the gradient of the graph is close to $\mathbf{2}$, the calculation would be much easier to do mentally.

The proper formula is $\mathbf{F}=\mathbf{1 . 8 C}+\mathbf{3 2}$
and if we make the approximation $\mathbf{F}=\mathbf{2 C}+$ "something", we will need to work out a value for the "something" which fits the temperature range.
Since we know that $35^{\circ} \mathrm{C}=95^{\circ} \mathrm{F}$ we can use this as a guide:
$95=2 \times 35+$ "something"
$95=70+$ "something"
So the approximate formula to use is $\mathrm{F} \approx 2 \mathrm{C}+\mathbf{2 5}$
or transposed, we get $\mathrm{C}=\underline{(\mathrm{F}-25)}$
2
If I draw the two graphs accurately, we see that they fit very closely in the required temperature range. The RED line is the exact line.

The BLUE line is the approximation.

Considering the $39^{\circ} \mathrm{C}$ from above we see that the exact number in ${ }^{\circ} \mathrm{F}=\mathbf{1 0 2 . 2}{ }^{0}$ And our approximate formula gives $2 \times 39+25=\mathbf{1 0 3}^{\mathbf{0}}$

For temperatures close to $35^{\circ} \mathrm{C}$ the approximations are very close.
At the extreme ends of the range, the approximations are within $2^{0} \mathrm{~F}$

Exact Celsius	Exact Fahrenheit	Approx Fahrenheit
25	77	75
35	95	95
45	113	112

This method will work for any restricted temperature range.
Consider the case of a winter period where the temperature averages $5^{\circ} \mathrm{C}$ and varies between $0^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$

Celsius	Fahrenheit
0	32
5	41
10	50

Finding an approximate equation, let $\mathrm{F}=2 \mathrm{C}+\mathrm{p}$
Subs C $=5, \mathrm{~F}=41$
$41=10+\mathrm{p}$ so $\mathrm{p}=31$
The approximate equation is $\mathrm{F}=2 \mathrm{C}+\mathbf{3 1}$
As you can see the graphs are very close for this range of temperatures.
The RED line is the exact line.
The BLUE line is the approximation.

Exact Celsius	Exact Fahrenheit	Approx Fahrenheit
0	32	31
5	41	41
10	50	51

Some interesting points:

There is a temperature which is the same number in the Fahrenheit and Celsius scales.

Let $\mathrm{T}^{0} \mathrm{C}=\mathrm{T}^{0} \mathrm{~F}$
Then $\mathrm{T}=\frac{9 \mathrm{~T}}{5}+32$
So $5 \mathrm{~T}=9 \mathrm{~T}+160$
$-160=4 \mathrm{~T}$

$$
\mathrm{T}=-40
$$

This means $-40^{\circ} \mathrm{F}=-\mathbf{4 0} 0^{\circ} \mathrm{C}$

Also we find that $\mathbf{1 6}^{\mathbf{0}} \mathbf{C} \approx \mathbf{6 1}^{\mathbf{0}} \mathbf{F}$ (just change the numbers round!)
Also $\mathbf{2 8}^{\mathbf{0}} \mathrm{C} \approx \mathbf{8 2}{ }^{\mathbf{0}} \mathrm{F}$
There are no other pairs which behave like this.

