Converting between Fahrenheit and Celsius temperature scales Mentally.

On a recent trip to the USA I found it frustrating mentally converting the temperatures from the **Fahrenheit scale** to the more familiar **Celsius scale**. There is no problem if you have a calculator on hand but the formula can be awkward when trying to work out a quick answer.

Basically, the freezing point of water in Fahrenheit is 32^{0} F and in Celsius it is 0^{0} C

The boiling point of water in Fahrenheit is 212^{0} F and in Celsius it is 100^{0} C. The linear graph is as follows:

The gradient of this line is $\frac{180}{100}$ or $\frac{9}{5}$ or 1.8 The "y" intercept is 32

If we want to change from degrees C to degrees F, the most convenient formula is:

 $F = 1.8C + 32 \text{ or } F = \frac{9}{5}C + 32$

If we want to change from degrees F to degrees C it is more convenient to transpose the formula to the form:

$$C = 5 \times \frac{(F - 32)}{9}$$

On my trip, a typical temperature in Arizona was 35° C which amounts to $F = \frac{9 \times 35}{5} + 32 = 95$ in Fahrenheit.

The temperature range was often between $25^{\circ}C$ and $45^{\circ}C$ which is $77^{\circ}F$ to $113^{\circ}F$

If the temperature were 39[°]C the calculation would be $\frac{9 \times 39}{5} + 32$

which is a little awkward to do mentally.

However if we notice the gradient of the graph is close to **2**, the calculation would be much easier to do mentally.

The proper formula is $\mathbf{F} = \mathbf{1.8C} + \mathbf{32}$ and if we make the approximation $\mathbf{F} = \mathbf{2C} + \text{"something"}$, we will need to work out a value for the "something" which fits the temperature range. Since we know that $35^{\circ}C = 95^{\circ}F$ we can use this as a guide:

 $95 = 2 \times 35 +$ "something" 95 = 70 + "something" So the approximate formula to use is F $\approx 2C + 25$ or transposed, we get C = (F - 25)2

If I draw the two graphs accurately, we see that they fit very closely in the required temperature range. The **RED** line is the exact line.

Considering the 39[°]C from above we see that the exact number in ${}^{0}F = 102.2^{\circ}$ And our approximate formula gives $2 \times 39 + 25 = 103^{\circ}$

For temperatures close to 35° C the approximations are very close. At the extreme ends of the range, the approximations are within 2° F \checkmark

Exact Celsius	Exact Fahrenheit	Approx Fahrenheit
25	77	75
35	95	95
45	113	112

This method will work for any restricted temperature range.

Consider the case of a winter period where the temperature averages 5° C and varies between 0° C and 10° C

Celsius	Fahrenheit
0	32
5	41
10	50

Finding an approximate equation, let F = 2C + p

Subs C = 5, F = 41

41 = 10 + p so p = 31

The approximate equation is F = 2C + 31

As you can see the graphs are very close for this range of temperatures.

The **RED** line is the exact line.

The **BLUE** line is the approximation.

Exact Celsius	Exact Fahrenheit	Approx Fahrenheit
0	32	31
5	41	41
10	50	51

Some interesting points:

There is a temperature which is the **same number** in the Fahrenheit and Celsius scales.

Let T ${}^{0}C = T {}^{0}F$ Then T = $\frac{9T}{5} + 32$ So 5T = 9T + 160 -160 = 4TT = -40This means $-40^{0}F = -40^{0}C$

Also we find that $16^{\circ}C \approx 61^{\circ}F$ (just change the numbers round!) Also $28^{\circ}C \approx 82^{\circ}F$

There are no other pairs which behave like this.