THE "GOLDEN" RECTANGLE.

Which of these rectangles do you prefer?

Most people choose rectangle \mathbf{B}.
This is the special case called the "Golden Rectangle".
You can construct a golden rectangle as follows:
(i) Draw any square and bisect the base. Let the mid-point of line AB be P .

(ii) Put your compass point on P and open it to a radius of PC.
Draw the arc from C to AB meeting the extended line $A B$ at X . (repeat the procedure to find Y)

(iii) Finally draw the golden rectangle AXYD.

If you measure the lengths of the base and height of a golden rectangle and divide them then the answer is about 1.6.

This is called the GOLDEN RATIO and actually equals $\frac{1+\sqrt{5}}{2} \approx 1.618033989 \ldots$.
This number keeps occurring in nature in many places from the human face to flower petals.

To calculate the value of the GOLDEN RATIO

Clearly $b^{2}=1^{2}+2^{2}$

$$
\begin{array}{r}
b^{2}=5 \\
\text { so } b=\sqrt{5}
\end{array}
$$

The sides of the rectangle are:

$$
\mathrm{AB}=1+\sqrt{ } 5 \quad \text { and } \mathrm{AD}=2
$$

so the GOLDEN RATIO is $\frac{1+\sqrt{ } 5}{2}$
$\approx 1.618033989 \ldots$

PQRS and QRTU are golden rectangles.
The RATIOS of the sides are equal.
For PQRS: $\underline{(\text { Short side })}=\underline{1}$
(Long side) X
For QRTU: $\frac{(\text { Short side })}{(\text { Long side })}=\frac{x-1}{1}$

Equating these:

$$
\frac{\mathrm{x}-1}{1}=\frac{1}{\mathrm{x}}
$$

If we solve this we get $x^{2}-x=1$

$$
\begin{aligned}
& x^{2}-x-1=0 \\
& x=\frac{1 \pm \sqrt{ }(1+4)}{2} \\
& x=\frac{1 \pm \sqrt{ } 5}{2}
\end{aligned}
$$

But since x is a positive value $\mathrm{x}=\frac{1+\sqrt{5}}{2}$

