IMPLICIT DIFFERENTIATION EXPLAINED.

Normally, when we differentiate an expression we simply write the following:

If

$$
y=5 x^{3}
$$

then $\frac{d y}{d x}=15 x^{2}$
We need to re-think of $\frac{d y}{d}$ in a different way: $d x$
we need to think of $\frac{d}{d x}(\quad)$ as meaning :
"Differentiate the x 's in the brackets"
Sometimes this is referred to as: "Differentiate with respect to x " but it is perhaps more instructive just to think of it as "Differentiate the x 's"

So $\frac{\mathbf{d}}{\mathbf{d x}}\left(\mathrm{x}^{3}\right)$ means: "Differentiate the x 's" and of course it equals $\mathbf{3} \mathbf{x}^{\mathbf{2}}$

Similarly, $\frac{\mathbf{d}}{\mathbf{d y}}\left(\mathrm{y}^{4}\right)$ means: "Differentiate the $\mathrm{y}^{\prime} \mathrm{s}$ " and this equals $\mathbf{4 y}{ }^{3}$

Also, $\frac{\mathbf{d}}{\mathbf{d t}}\left(\mathrm{t}^{6}+5 \mathrm{t}+3\right)$ means: "Differentiate the t 's" and this equals $\mathbf{6} \mathbf{t}^{\mathbf{5}}$

Now consider the expression:

$$
\frac{d}{d x}\left(\boldsymbol{t}^{5}\right)
$$

This means to differentiate the \boldsymbol{x} 's but there are no \boldsymbol{x} 's, only \boldsymbol{t} 's!
Here we use a version of the chain rule normally stated as:

The DIFFERENCE between EXPLICIT and IMPLICIT Equations.
Firstly an Explicit equation has \boldsymbol{y} as the subject and just \boldsymbol{x} 's on the other side.

Eg $y=x^{3}+x^{2}-4 x+7$

An Implicit equation has \boldsymbol{x} 's and \boldsymbol{y} 's mixed throughout the equation.

$$
\operatorname{Eg} \quad y^{3}+x^{4}+5 y^{2}-7 x=2
$$

It is often not possible to transform an implicit equation into an explicit equation so we use the method above to differentiate such equations.

Consider the equation:

$$
y^{3}+x^{4}+5 y^{2}-7 x=2
$$

If possible, it is quite a good idea to have \boldsymbol{x} 's on one side of the equation and \boldsymbol{y} 's on the other even though we cannot make \boldsymbol{y} the single subject.

$$
y^{3}+5 y^{2}=2+7 x-x^{4}
$$

Now we differentiate both sides of the equation with respect to \boldsymbol{x}.

$$
\frac{d}{d x}\left(y^{3}+5 y^{2}\right)=\frac{d}{d x}\left(2+7 x-x^{4}\right)
$$

Remember the symbol $\frac{d}{d x}()$ means, differentiate the x 's in the brackets.

We can do the right hand side (above) but the left hand side has \boldsymbol{y} 's not \boldsymbol{x} 's.
So using the chain rule idea explained earlier, we do the following:

Normally, we would just set out the answer as follows:
Find $\frac{d y}{d x}$ if $\quad e^{3 y}+\sin y=\ln (x)+x^{4}$
$3 e^{3 y} \frac{d y}{d x}+\cos y \frac{d y}{d x}=\frac{1}{x}+4 x^{3}$
$\frac{d y}{d x}\left(3 e^{3 y}+\cos y\right)=\frac{1}{x}+4 x^{3}$

$$
\frac{d y}{d x}=\frac{\frac{1}{x}+4 x^{3}}{\left(3 e^{3 y}+\cos y\right)}
$$

EXTENSION.

Sometimes we need to use the product rule or quotient rule as well:
eg. Find \boldsymbol{y}^{\prime} if :

$$
\begin{gathered}
x^{3} y^{5}+x y=9 x \\
x^{3} 5 y^{4} y^{\prime}+3 x^{2} y^{5}+x y^{\prime}+1 y=9 \\
y^{\prime}\left(x^{3} 5 y^{4}+x\right)=9-3 x^{2} y^{5}-y \\
y^{\prime}=\frac{\left(9-3 x^{2} y^{5}-y\right)}{\left(x^{3} 5 y^{4}+x\right)}
\end{gathered}
$$

A particularly difficult point is finding $\frac{d^{2} y}{d x^{2}}$ for Parametric Equations.

$$
\begin{aligned}
e g \quad y & =t^{3}+t^{2} \quad \text { and } \quad x=\ln (t) \\
\frac{d y}{d t} & =3 t^{2}+2 t \quad \frac{d x}{d t}=\frac{1}{t} \\
\frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
& =\left(3 t^{2}+2 t\right) \times t \\
& =3 t^{3}+2 t^{2}
\end{aligned}
$$

$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \times\left(\frac{d y}{d x}\right) \quad$ which means "differentiate $\frac{d y}{d x}$ "

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(3 t^{3}+2 t^{2}\right)
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d t}{d x} \times \frac{d}{d t}\left(3 t^{3}+2 t^{2}\right) \\
& =t \times\left(9 t^{2}+4 t\right)
\end{aligned}
$$

$$
=9 t^{3}+4 t^{2}
$$

Finally, an interesting point is that we can find $\boldsymbol{y}^{\prime \prime}$ in the following case in three ways: parametrically, implicitly and explicitly.

PARAMETRICALLY:

$$
\begin{array}{cc}
x=\sin t & y=\cos t \\
\frac{d x}{d t}=\cos t & \frac{d y}{d t}=-\cos t \\
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{-\sin t}{\cos t}=-\tan t \\
\left.\frac{d^{2} y}{d x^{2}}=-\frac{d(}{d x} \tan t\right)=-\frac{d t}{d x} \times \frac{d}{d t}(\tan t) \\
=-\frac{1}{\cos t} \times \sec ^{2} t=\frac{-1}{\cos ^{3} t}=-\frac{1}{y^{3}}
\end{array}
$$

IMPLICITLY:

Consider $\quad x^{2}+y^{2}=1$

$$
\text { So } 2 x+2 y y^{\prime}=0
$$

$$
y^{\prime}=-\underline{x}
$$

and $\quad y^{\prime \prime}=-\left(\frac{y \times 1-x \times y^{\prime}}{y^{2}}\right)$
$=-\left(\frac{y+\frac{x^{2}}{y}}{y^{2}}\right)$
$=-\left(\frac{y^{2}+x^{2}}{y^{3}}\right)=-\frac{1}{y^{3}}$

EXPLICITLY:

$$
\begin{gathered}
y=\left(1-x^{2}\right)^{1 / 2} \quad(\text { ignoring } \pm) \\
\text { so } y^{\prime}=1 / 2\left(1-x^{2}\right)^{-1 / 2} \times(-2 x) \\
=\frac{-x}{\left(1-x^{2}\right)^{1 / 2}}
\end{gathered}
$$

$$
\left.\begin{array}{rl}
\text { And } y^{\prime \prime} & =-\left\{\frac{\left(1-x^{2}\right)^{1 / 2}-x^{2}\left(1-x^{2}\right)^{-1 / 2}}{\left(1-x^{2}\right)}\right. \\
& =-\left(\frac{\left(1-x^{2}\right)^{1 / 2}-\frac{x^{2}}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right.
\end{array}\right)
$$

In your equation, for better understanding, it is probably better to change it to:

$$
y^{2}=10-x^{2}
$$

Differentiating with respect to x :

$$
\begin{gathered}
\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}\left(10-x^{2}\right) \\
\frac{d y}{d x} \frac{d}{d y}\left(y^{2}\right)=\frac{d}{d x}\left(10-x^{2}\right)
\end{gathered}
$$

so we get:

$$
\begin{gathered}
\frac{d y}{d x}[2 y]=-2 x \\
\frac{d y}{d x}=-\frac{x}{y}
\end{gathered}
$$

