HOW CAN $\sin (x)=2$.

The basic graph of $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x})$ just has real \mathbf{x} values and real \mathbf{y} values.

The key to understanding my answer is that we can find some complex values of x which still produce real y values!

In order to allow complex x values, I need to write the x values as complex numbers so I will replace \mathbf{x} with $\mathbf{x}+\mathbf{i z}$

Instead of just $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x})$, I will use $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x}+\mathbf{i z})$
Obviously I will need a real \mathbf{x} axis and an imaginary \mathbf{x} axis which I called \mathbf{z}.

$$
\text { let } \begin{aligned}
y & =\sin (x+i z) \\
& =\sin (x) \cos (i z)+\cos (x) \sin (i z) \\
& =\sin (x) \cosh (z)+i \cos (x) \sinh (z)
\end{aligned}
$$

I know this looks awful but notice that certain values of x will ensure that we the y values stay real.

If $\mathrm{X}=\frac{\pi}{2}$
Then $y=\sin \left(\frac{\pi}{2}\right) \times \cosh (z)+i \cos \left(\frac{\pi}{2}\right) \times \sinh (z)$

so that $\mathbf{y}=1 \times \cosh (\mathbf{z})+i \times 0=\cosh (\mathbf{z})$

In fact for all values of $\mathbf{x}=\frac{\boldsymbol{\pi}}{\mathbf{2}}+\mathbf{2 n} \boldsymbol{\pi}$ then $\mathbf{y}=\boldsymbol{\operatorname { c o s h }}(\mathbf{z})$
2

Also if $x=\frac{3 \pi}{2}$
Then $\mathbf{y}=-\mathbf{1} \times \cosh (\mathbf{z})+\mathbf{i} \times 0=-\cosh (z)$

In fact for all values of $x=\frac{3 \pi}{2}+2 n \pi$ then $y=-\cosh (z)$

The graph of $y=\sin (x+i z)$ for REAL y values is:

This means that $\mathrm{y}=\sin (\mathrm{x})$ is not restricted to y values between -1 and +1

Now consider where $\sin (\mathbf{x}+\mathbf{i z})=\mathbf{2}$

I will draw the plane $\mathbf{y}=\mathbf{2}$ and we see the intersection points:

The solutions where $\boldsymbol{\operatorname { s i n }}(\mathbf{x}+\boldsymbol{i z})=\mathbf{2}$ are where $\boldsymbol{\operatorname { c o s h }}(\mathbf{z})=\mathbf{2}$
That is when $\mathbf{z}= \pm \mathbf{1 . 3 1 7 \boldsymbol { i }}$
From the diagram above, the values of $\mathbf{x}+\boldsymbol{i z}$ which make $\boldsymbol{\operatorname { s i n }}(\mathbf{x}+\boldsymbol{i z})=\mathbf{2}$ are:

$\mathrm{X}+i \mathrm{Z}$	Because $\sin (\mathrm{x}+\mathrm{iz})=2$
$\frac{\pi}{2} \pm 1.317 i$	$\sin \left(\frac{\pi}{2} \pm 1.317 i\right)=2$
$\frac{5 \pi}{2} \pm 1.317 i$	$\sin \left(\frac{5 \pi}{2} \pm 1.317 i\right)=2$
$\frac{-3 \pi}{2} \pm 1.317 i$	$\sin \left(-\frac{3 \pi}{2} \pm 1.317 i\right)=2$

