The Vanishing Points of Inflection.

A point of inflection is when the gradient stops increasing and starts decreasing or vice versa.

Often, we can say that points of inflection occur when y''=0 but not always! eg if $y = x^4$

$$y' = 4x^3$$

$$y'' = 12x^2 = 0$$
 if $x = 0$

But this graph has a minimum point at x = 0, not a point of inflection.

Consider the curve $y = x^4 - 4x^3 + 6x^2$ We would probably expect to get a typical curve such as : but the gradient $y' = 4x^3 - 12x^2 + 12x = 4x(x^2 - 3x + 4)$ The gradient is zero if x = 0 because $x^2 - 3x + 4 \neq 0$ (only 1 turning point) The 2nd derivative $y'' = 12x^2 - 24x + 12$ $= 12(x^2 - 2x + 1)$ $= 12(x - 1)^2$

This is zero if x = 1, so we would expect an inflection point at (1, 3) The actual curve looks something like this:

To solve this puzzle we need to look at curves with very similar equations.

Consider the curve
$$y = x^4 - 4x^3 + \frac{4x^2}{4x^2} = x^2(x^2 - 4x + 4) = x^2(x - 2)^2$$

The gradient $y' = 4x^3 - 12x^2 + 8x$
 $= 4x(x^2 - 3x + 2)$
 $= 4x(x - 1)(x - 2)$
The gradient = 0 if $x = 0$, 1 and 2
The 2nd derivative $y'' = 12x^2 - 24x + 8$
The points of inflection are when $y'' = 0$
when $x \approx 0.4$ and 1.6
0.4
1
1.6
2

Notice particularly that the curve is "concave down" between the two points of inflection in the interval 0.4 < x < 1.6

(ie This is the interval during which the gradient is decreasing)

Notice particularly that the curve is "concave down" between the two points of inflection in the interval 0.6 < x < 1.4

(ie The gradient is decreasing in the small interval 0.6 < x < 1.4)

Notice particularly that the curve is "concave down" between the two points of inflection in the interval 0.8 < x < 1.2

(ie The interval during which the gradient is decreasing, is getting smaller.)

Although y''=0 at x = 1, the curve does not have a point of inflection because the gradient never decreases. It is increasing constantly as x increases.