The Vanishing Points of Inflection.

A point of inflection is when the gradient stops increasing and starts decreasing or vice versa.
Often, we can say that points of inflection occur when $y^{\prime \prime}=0$ but not always!
eg if $\boldsymbol{y}=\boldsymbol{x}^{4}$

$$
\begin{aligned}
& y^{\prime}=4 x^{3} \\
& y^{\prime \prime}=12 x^{2}=0 \text { if } x=0
\end{aligned}
$$

But this graph has a minimum point at $\boldsymbol{x}=\mathbf{0}$,
 not a point of inflection.

Consider the curve $y=x^{4}-4 x^{3}+6 x^{2}$
We would probably expect to get a typical curve such as :
 but the gradient $y^{\prime}=4 x^{3}-12 x^{2}+12 x=4 x\left(x^{2}-3 x+4\right)$
The gradient is zero if $x=0$ because $x^{2}-3 x+4 \neq 0$ (only 1 turning point)
The $2^{\text {nd }}$ derivative $y^{\prime \prime}=12 x^{2}-\mathbf{2 4 x}+\mathbf{1 2}$

$$
\begin{aligned}
& =12\left(x^{2}-2 x+1\right) \\
& =12(x-1)^{2}
\end{aligned}
$$

This is zero if $\boldsymbol{x}=\boldsymbol{1}$, so we would expect an inflection point at $(1,3)$
The actual curve looks something like this:

To solve this puzzle we need to look at curves with very similar equations.

Consider the curve $y=x^{4}-4 x^{3}+4 x^{2}=x^{2}\left(x^{2}-4 x+4\right)=x^{2}(x-2)^{2}$
The gradient $y^{\prime}=4 x^{3}-12 x^{2}+8 x$

$$
\begin{aligned}
& =4 x\left(x^{2}-3 x+2\right) \\
& =4 x(x-1)(x-2)
\end{aligned}
$$

The gradient $=0$ if $\boldsymbol{x}=\mathbf{0}, 1$ and 2 The $2^{\text {nd }}$ derivative $y^{\prime \prime}=\mathbf{1 2 x ^ { 2 }}-\mathbf{2 4 x}+\boldsymbol{8}$ The points of inflection are when $y^{\prime \prime}=0$ when $\boldsymbol{x} \approx 0.4$ and 1.6

Notice particularly that the curve is "concave down" between the two points of inflection in the interval $0.4<x<1.6$ (ie This is the interval during which the gradient is decreasing)

Now consider the curve $y=x^{4}-4 x^{3}+5 x^{2}$ The gradient $y^{\prime}=4 x^{3}-12 x^{2}+10 x$ The gradient $=0$ only if $\boldsymbol{x}=0$. The $2^{\text {nd }}$ derivative $y^{\prime \prime}=\mathbf{1 2} \boldsymbol{x}^{2}-\mathbf{2 4 x}+\mathbf{1 0}$ The points of inflection are when $y^{\prime \prime}=0$ when $x \approx 0.6$ and 1.4

Notice particularly that the curve is "concave down" between the two points of inflection in the interval $0.6<x<1.4$
(ie The gradient is decreasing in the small interval $0.6<x<1.4$)

Similarly consider the curve $y=x^{4}-4 x^{3}+5.8 x^{2}$ The gradient $y^{\prime}=4 x^{3}-12 x^{2}+11.6 x$ The gradient $=0$ only if $x=0$. The $2^{\text {nd }}$ derivative $y^{\prime \prime}=\mathbf{1 2} \boldsymbol{x}^{2}-\mathbf{2 4 x}+\mathbf{1 1}$. 0 The points of inflection are when $y^{\prime \prime}=0$ when $x \approx 0.8$ and 1.2

Notice particularly that the curve is "concave down" between the two points of inflection in the interval $0.8<x<1.2$
(ie The interval during which the gradient is decreasing, is getting smaller.)

Finally, reconsidering the curve $y=x^{4}-4 x^{3}+6 x^{2}$
The $2^{\text {nd }}$ derivative $y^{\prime \prime}=12 x^{2}-\mathbf{2 4 x}+\mathbf{1 2}$

$$
\begin{aligned}
& =12\left(x^{2}-2 x+1\right) \\
& =12(x-1)^{2}
\end{aligned}
$$

We see that $\boldsymbol{y}^{\prime \prime}=0$ only if $\boldsymbol{x}=1$ Normally, we would get two values of \boldsymbol{x} but in this limiting case, the two values have converged to $\boldsymbol{x}=1$ so the curve has no interval in which it is concave down.

Although $\boldsymbol{y}^{\prime \prime}=0$ at $\boldsymbol{x}=1$, the curve does not have a point of inflection because the gradient never decreases. It is increasing constantly as \boldsymbol{x} increases.

