THE SPECIAL TRIANGLES.

Consider an equilateral triangle with sides of 2 cm .
Obviously the angles are all 60°
Split the triangle in half:

Calculating x by Pythagoras's Theorem:

$$
\begin{aligned}
x^{2}+1^{2} & =2^{2} \\
x^{2} & =3 \\
x & =\sqrt{ } 3
\end{aligned}
$$

From this triangle we can "read off"
all the trigonometric ratios for 60° and 30°
$\sin 60=\frac{\sqrt{ } 3}{2}$
$\sin 30=\frac{1}{2}$

$\cos 60=\frac{1}{2}$
$\cos 30=\frac{\sqrt{ } 3}{2}$
$\tan 60=\frac{\sqrt{ } 3}{1}$
$\tan 30=\frac{1}{\sqrt{3}}$ which we usually simplify to $\frac{\sqrt{ } 3}{3}$
Similarly consider a right angled isosceles triangle with the equal sides $=1 \mathrm{~cm}$ The other angles are both 45°

Obviously $\begin{gathered}x^{2}=1+1 \\ x=\sqrt{2}\end{gathered}$

Obviously we read off these values: $\sin 45=\cos 45=\frac{1}{\sqrt{2}}$ and $\tan 45=1$
VIDEO http://screencast.com/t/iXuA4jCACUu

