THE SPECIAL TRIANGLES.

Split the triangle in half:

x

 $\sqrt{3}$

2

1

Consider an equilateral triangle with sides of 2 cm. Obviously the angles are all 60°

Calculating x by Pythagoras's Theorem: $x^2 + I^2 = 2^2$

$$\begin{array}{l} +1 &= 2 \\ x^2 &= 3 \\ x &= \sqrt{3} \end{array}$$

From this triangle we can "read off" all the trigonometric ratios for 60° and 30°

Similarly consider a right angled isosceles triangle with the equal sides = 1 cm The other angles are both 45°

Obviously we read off these values: $sin 45 = cos 45 = \frac{1}{\sqrt{2}}$ and tan 45 = 1

VIDEO http://screencast.com/t/iXuA4jCACUu