Why can't we differentiate a power of \boldsymbol{x} to get $\frac{\mathbf{1}}{\boldsymbol{x}} ?$

A good way to think of this is from the aspect of differentiating simple powers of x.
When we do this there is one particular power missing!
Consider these carefully:
$y=x^{4}$ so $y^{\prime}=4 x^{3}$
$y=x^{3}$ so $y^{\prime}=3 x^{2}$
$y=x^{2}$ so $y^{\prime}=2 x^{1}$
$y=x^{1}$ so $y^{\prime}=1 x^{0}=1$
$y=x^{-1}$ so $y^{\prime}=-1 x^{-2}=\frac{-1}{x^{2}}$
Did you notice that we never
$y=x^{-2}$ so $y^{\prime}=-2 x^{-3}=\frac{-2}{x^{3}}$
$y=x^{-3}$ so $y^{\prime}=-3 x^{-4}=\frac{-3}{x^{4}}$

No matter what power of \boldsymbol{x} we differentiate, we can never get the answer of $\frac{\mathbf{1}}{\boldsymbol{x}}$ so if we antidifferentiate $\frac{\mathbf{1}}{\boldsymbol{x}}$ it cannot become a power of \boldsymbol{x}.

Of course, we find out later that the antiderivative of $\frac{\mathbf{1}}{\boldsymbol{x}}$ is $\ln (x)$

