Why can't we differentiate a power of x to get $\frac{1}{x}$?

A good way to think of this is from the aspect of differentiating simple powers of x.

When we do this there is one particular power missing!

Consider these carefully:

y = x⁴ so y ' = 4x³ y = x³ so y ' = 3x² y = x² so y ' = 2x¹ y = x¹ so y ' = 1x⁰ = 1 y = x⁻¹ so y ' = -1 x⁻² = <u>-1</u> x² y = x⁻² so y ' = -2 x⁻³ = <u>-2</u> x³ y = x⁻³ so y ' = -3 x⁻⁴ = <u>-3</u> x⁴

No matter what power of x we differentiate, we can never get the answer of $\frac{1}{x}$

so if we antidifferentiate $\frac{1}{x}$ it cannot become a power of x.

Of course, we find out later that the antiderivative of $\frac{1}{x}$ is $\ln(x)$