A simple intersection problem that turned out to be not so simple!

Find the intersection points of $y = x^2$ and $y^2 + x^2 = 2$

I decided to draw the graphs then look at the algebra...

$$(x^{-}) + x^{-} = 2$$

$$x^{4} + x^{2} = 2$$

$$x^{4} + x^{2} - 2 = 0$$

$$(x^{2} - 1)(x^{2} + 2) = 0$$

$$(x - 1)(x + 1)(x - i\sqrt{2})(x + i\sqrt{2}) = 0$$

$$x = \pm 1 \text{ and } \pm i\sqrt{2}$$

The question is "How do I account for the two solutions: $= \pm i\sqrt{2}$?" If $x = \pm i\sqrt{2}$ then y = -2 which is a **real y value**! We appear to have 4 intersections at (1, 1), (-1, 1), ($i\sqrt{2}$, -2) and ($-i\sqrt{2}$, -2) I will explain how such points can be on both these graphs by considering each one separately.

If $y = x^2$ the usual points we use are... x = 0, y = 0 $x = \pm 1, y = 1$ $x = \pm 2, y = 4$ $x = \pm 3, y = 9$

...but we can choose some imaginary x values which produce REAL y values! $x = \pm i$, y = -1 $x = \pm 2i$, y = -4 $x = \pm 3i$, y = -9

To put these points on a graph we need an extra x axis for these imaginary values. This now produces another parabola underneath the basic $y = x^2$ but at right angles to it as shown below...

If $y^2 + x^2 = 2$ we can't find a lot of integer points other than $(\pm 1, 1)$ and $(\pm 1, -1)$

If x = 0 we get $y = \pm \sqrt{2}$ and if y = 0 we get $x = \pm \sqrt{2}$ and using all these points this is a circle of radius $\sqrt{2}$.

But we can choose some real y values that require imaginary x values...

If y = 2 then $x^2 = -2$ and $x = \pm i\sqrt{2}$ If y = 3 then $x^2 = -7$ and $x = \pm i\sqrt{7}$

These points form a hyperbola as shown below...

Now if I put both graphs together we can see that there are 4 intersection points as predicted by the algebra shown above!

Graph showing the intersection points of $y = x^2$ and $y^2 + x^2 = 2$

You can find out more about these fascinating graphs on my website...

www.phantomgraphs.weebly.com

I will show how I worked out the equations of the phantom graphs for the above problem.

The basic 2D version of $\mathbf{y} = \mathbf{x}^2$ just has real x values and real y values. I will allow those complex x values which still produce real y values when substituted into the graph's equation. I will replace \mathbf{x} with $\mathbf{x} + \mathbf{i}\mathbf{z}$

The equation $y = x^2$ becomes $y = (x + iz)^2$ expanding $y = x^2 - z^2 + 2ixz$ -----Equ 1

I only want REAL values of y so **2ixz** has to be zero!

This means z = 0 or x = 0

Subs $z = 0$ in Equ 1	Subs $x = 0$ in Equ 1
$y = x^2$	$y = -z^2$
This is the equation of the basic parabola in the x, y plane.	This is the equation of the <i>phantom</i> parabola in the y , z plane at right angles to the basic parabola and underneath it

The equation $y^2 + x^2 = 2$ becomes $y^2 + (x + iz)^2 = 2$ expanding $y^2 + x^2 - z^2 + 2ixz = 2$ -----Equ 2

Again, I only want REAL values of y so 2ixz has to be zero!

This means z = 0 or x = 0

Subs $z = 0$ in Equ 2	Subs $x = 0$ in Equ 2
$y^2 + x^2 = 2$	$y^2 - z^2 = 2$
This is the equation of the basic circle in the x, y plane.	This is the equation of the <i>phantom</i> hyperbola in the y , z plane at right angles to the basic circle.