A simple intersection problem that turned out to be not so simple!

Find the intersection points of $y=x^{2}$ and $y^{2}+x^{2}=2$
I decided to draw the graphs then look at the algebra...

It seems perfectly obvious and
straightforward that the curves intersect at $(1,1)$ and $(-1,1)$ but the algebra tells a different story!

Subs $y=x^{2}$ into $y^{2}+x^{2}=2$

$$
\begin{array}{r}
\left(x^{2}\right)^{2}+x^{2}=2 \\
x^{4}+x^{2}=2 \\
x^{4}+x^{2}-2=0 \\
\left(x^{2}-1\right)\left(x^{2}+2\right)=0
\end{array}
$$

$$
(x-1)(x+1)(x-i \sqrt{2})(x+i \sqrt{2})=0
$$

$$
x= \pm 1 \text { and } \pm i \sqrt{2}
$$

The question is "How do I account for the two solutions: $= \pm i \sqrt{2} ?$ "
If $x= \pm i \sqrt{2}$ then $y=-2$ which is a real y value!
We appear to have 4 intersections at $(1,1),(-1,1),(i \sqrt{ } 2,-2)$ and $(-i \sqrt{ } 2,-2)$

I will explain how such points can be on both these graphs by considering each one separately.

If $\mathbf{y}=\mathbf{x}^{2}$ the usual points we use are...
$\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}$
$\mathrm{x}= \pm 1, \mathrm{y}=1$
$\mathrm{x}= \pm 2, \mathrm{y}=4$
$x= \pm 3, y=9$
...but we can choose some imaginary x values which produce REAL y values!
$\mathrm{x}= \pm \mathbf{i}, \mathrm{y}=-\mathbf{1}$
$x= \pm 2 i, y=-4$
$x= \pm 3 i, y=-9$
To put these points on a graph we need an extra x axis for these imaginary values. This now produces another parabola underneath the basic $y=x^{2}$ but at right angles to it as shown below...

If $\mathbf{y}^{\mathbf{2}}+\mathbf{x}^{\mathbf{2}}=\mathbf{2}$ we can't find a lot of integer points other than $(\pm 1,1)$ and $(\pm 1,-1)$
If $x=0$ we get $y= \pm \sqrt{ } 2$ and if $y=0$ we get $x= \pm \sqrt{2}$ and using all these points this is a circle of radius $\sqrt{ } 2$.

But we can choose some real y values that require imaginary x values...
If $y=2$ then $x^{2}=-\mathbf{2}$ and $\mathbf{x}= \pm \mathbf{i} \sqrt{2}$
If $y=3$ then $x^{2}=-7$ and $x= \pm i \sqrt{ }$
These points form a hyperbola as shown below...

Now if I put both graphs together we can see that there are 4 intersection points as predicted by the algebra shown above!

Graph showing the intersection points of $y=x^{2}$ and $y^{2}+x^{2}=2$

You can find out more about these fascinating graphs on my website...
www.phantomgraphs.weebly.com

I will show how I worked out the equations of the phantom graphs for the above problem.

The basic 2D version of $\mathbf{y}=\mathbf{x}^{2}$ just has real x values and real y values.
I will allow those complex x values which still produce real y values when substituted into the graph's equation. I will replace \boldsymbol{x} with $\boldsymbol{x}+\boldsymbol{i z}$

The equation $y=x^{2}$
becomes $\quad \boldsymbol{y}=(\boldsymbol{x}+\boldsymbol{i z})^{2}$
expanding $y=x^{2}-z^{2}+2 i x z--------$-Equ 1
I only want REAL values of y so $2 \boldsymbol{i x z}$ has to be zero!
This means $\boldsymbol{z}=\mathbf{0}$ or $\boldsymbol{x}=\mathbf{0}$

Subs $\boldsymbol{z}=\mathbf{0}$ in Equ $\mathbf{1}$	Subs $\boldsymbol{x}=\mathbf{0}$ in Equ $\mathbf{1}$ $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$
This is the equation of the basic parabola in the x, y plane.	This is the equation of the phantom parabola in the \mathbf{y}, \mathbf{z} plane at right angles to the basic parabola and underneath it

The equation $\boldsymbol{y}^{2}+\boldsymbol{x}^{2}=\mathbf{2}$
becomes $\quad y^{2}+(x+i z)^{2}=\mathbf{2}$
expanding $y^{2}+x^{2}-z^{2}+2 i x z=2$
Again, I only want REAL values of y so $2 i x z$ has to be zero!
This means $\boldsymbol{z}=\mathbf{0}$ or $\boldsymbol{x}=\mathbf{0}$

| Subs $z=0$ in Equ 2 |
| :--- | :--- |
| $\qquad y^{2}+x^{2}=2$ |\quad| Subs $\boldsymbol{x}=\mathbf{0}$ in Equ 2 |
| :--- |
| $y^{2}-z^{2}=2$ |
| This is the equation of the
 basic circle in the x, y
 plane. |
| This is the equation of the
 phantom hyperbola in the y, z
 plane at right angles to the
 basic circle. |

