INTERSECTING CIRCLES.

I was recently telling someone how circles can intersect when I came across an astonishing conclusion!

I showed the obvious cases as follows:

For 2 intersections:

I showed how we obtain a **quadratic equation with 2 solutions.** Example: $x^2 + y^2 = 5$ ------EquA and $(x - 2)^2 + (y - 2)^2 = 1$ -----EquB Expanding EquB: $x^2 - 4x + 4 + y^2 - 4y + 4 = 1$ -----EquC Subtracting EquA: -4x + 4 - 4y + 4 = -4 y = 3 - xSubstitute in EquA: $x^2 + (3 - x)^2 = 5$ $2x^2 - 6x + 9 = 5$ $2x^2 - 6x + 4 = 0$ $x^2 - 3x + 2 = 0$ (x - 1)(x - 2) = 0 x = 1 and x = 2 y = 2 and y = 1Intersection points (1, 2) and (2, 1)

For 1 intersection:

I showed how we obtain an equation with 1 solution.

Example: $y^2 = 4 - x^2$ ------EquA and $(x - 3)^2 + y^2 = 1$ ------EquB Substitute EquA into EquB: $(x - 3)^2 + (4 - x^2) = 1$ Expanding: $x^2 - 6x + 9 + 4 - x^2 = 1$ -6x + 12 = 0x = 2y = 0Intersection point (2,0)

For 0 intersections:

I showed how we obtain an equation with NO REAL solutions.

Example: $x^2 = 16 - y^2$ -----EquA and $x^2 + (y - 1)^2 = 1$ -----EquB Expanding EquB: $x^2 + y^2 - 2y + 1 = 1$ -----EquC Substituting EquA into EquB: $16 - y^2 + y^2 - 2y + 1 = 1$ 2y = 16y = 8

This was quite a dilemma at first.

I was trying to show a quadratic with no real solutions such as: $x^2 + x + 4 = 0$

However, I substituted y = 8 into EquA to obtain $x^2 = 16 - 64 = -48$ So if $x = \pm \sqrt{-48}$ there are no real intersections!

BUT then I started thinking.... "WHERE ARE THE IMAGINARY INTERSECTIONS?"

If y = 8 and $x^2 = -48$ then $x = \pm \sqrt{-48} = \pm 4i\sqrt{3}$

Somehow, these circle equations have intersection points at $(\pm 4i\sqrt{3}, 8)$

Thinking back to my *Phantom Graph* theory, I found that a circle has an associated hyperbola attached! I will explain in full.

I will just consider **REAL y values** but I will allow **imaginary x values** (indicated by the answer I just obtained). I will replace the REAL variable x by the complex version x + iz*Equation A from the last section was* $x^2 + y^2 = 16$ This now becomes: $(x + iz)^2 + y^2 = 16$ $x^2 + 2xzi - z^2 + y^2 = 16$ *so we get* $y^2 = 16 - x^2 - 2xzi + z^2$ ------Equ C

If y is to be REAL then the term 2xzi has to be zero. This means either z = 0 or x = 0

Equation B from the last section was $x^{2} + (y-1)^{2} = 1$ This now becomes: $(x + iz)^{2} + (y-1)^{2} = 1$ $x^{2} + 2xzi - z^{2} + (y-1)^{2} = 1$ so we get $(y-1)^{2} = 1 - x^{2} - 2xzi + z^{2}$ ------Equ D

If y is to be REAL then the term 2xzi has to be zero. This means either z = 0 or x = 0

Finally we put these two graphs together and we can see that the phantom graphs DO intersect at the points $(\pm 4i\sqrt{3}, 8)$ marked as yellow points.

The two lower sections of the phantom hyperbolae do not intersect.

Here is a different view of the graphs...

