## INTERSECTING CIRCLES.

I was recently telling someone how circles can intersect when I came across an astonishing conclusion!

I showed the obvious cases as follows:


## For 2 intersections:

I showed how we obtain a quadratic equation with 2 solutions.
Example: $x^{2}+y^{2}=5$ $\qquad$ -EquA
and $(x-2)^{2}+(y-2)^{2}=1----$-EquB
Expanding EquB: $x^{2}-4 x+4+y^{2}-4 y+4=1$ $\qquad$
Subtracting EquA: $-4 x+4-4 y+4=-4$
Substitute in EquA: $\quad \begin{aligned} y & =3 \\ x^{2}+(3-x)^{2} & =5\end{aligned}$

$$
2 x^{2}-6 x+9=5
$$

$$
2 x^{2}-6 x+4=0
$$

$$
x^{2}-3 x+2=0
$$

$$
(x-1)(x-2)=0
$$

$$
x=1 \text { and } x=2
$$

$$
y=2 \text { and } y=1
$$



Intersection points $(1,2)$ and $(2,1)$

## For 1 intersection:

I showed how we obtain an equation with 1 solution.
Example: $y^{2}=4-x^{2}$----------------EquA and $(x-3)^{2}+y^{2}=1-----------$-EquB
Substitute EquA into EquB:
$(x-3)^{2}+\left(4-x^{2}\right)=1$
Expanding:
$x^{2}-6 x+9+4-x^{2}=1$
$-6 x+12=0$
$x=2$
$y=0$


Intersection point $(2,0)$

## For 0 intersections:

I showed how we obtain an equation with NO REAL solutions.
Example: $x^{2}=16-y^{2}$ $\qquad$
and $x^{2}+(y-1)^{2}=1$----------EquB
Expanding EquB:

$$
x^{2}+y^{2}-2 y+1=1-----E q u C
$$

Substituting EquA into EquB:

$$
\begin{aligned}
& 16-y^{2}+y^{2}-2 y+1=1 \\
& 2 y=16 \\
& y=8
\end{aligned}
$$

This was quite a dilemma at first.


I was trying to show a quadratic with no real solutions such as:
$x^{2}+x+4=0$
However, I substituted $y=8$ into EquA to obtain $x^{2}=16-64=-48$
So if $x= \pm \sqrt{-48}$ there are no real intersections!
BUT then I started thinking...

## "WHERE ARE THE IMAGINARY INTERSECTIONS?"

If $y=8$ and $x^{2}=-48$ then $x= \pm \sqrt{-48}= \pm 4 i \sqrt{3}$
Somehow, these circle equations have intersection points at $( \pm 4 i \sqrt{3}, 8)$

Thinking back to my Phantom Graph theory, I found that a circle has an associated hyperbola attached! I will explain in full.

I will just consider REAL $\mathbf{y}$ values but I will allow imaginary $\mathbf{x}$ values (indicated by the answer I just obtained).
I will replace the REAL variable $\boldsymbol{x}$ by the complex version $\boldsymbol{x}+\boldsymbol{i z}$
Equation $A$ from the last section was $x^{2}+y^{2}=\mathbf{1 6}$
This now becomes: $(\boldsymbol{x}+\boldsymbol{i z})^{2}+y^{2}=16$
$x^{2}+2 x z i-z^{2}+y^{2}=16$
so we get $y^{2}=16-x^{2}-2 x z i+z^{2}-\cdots-\cdots------$ Equ C
If $y$ is to be REAL then the term $2 x z i$ has to be zero.
This means either $z=0$ or $x=0$


Equation B from the last section was $x^{2}+(y-1)^{2}=1$
This now becomes: $(\boldsymbol{x}+\boldsymbol{i z})^{2}+(y-1)^{2}=1$

$$
x^{2}+2 x z i-z^{2}+(y-1)^{2}=1
$$

so we get $(y-1)^{2}=1-x^{2}-2 x z i+z^{2}$
Equ D
If y is to be REAL then the term $2 x z i$ has to be zero.
This means either $z=0$ or $x=0$

$$
\text { If } \mathbf{z}=\mathbf{0}
$$

Equ D becomes:

$$
(y-1)^{2}=1-x^{2}
$$

which is the original circle in


$$
\text { If } x=0
$$

Equ $D$ becomes:

$$
(y-1)^{2}=\mathbf{1}+\mathbf{z}^{2}
$$

which is the equation of the phantom hyperbola in the $\mathrm{z}, \mathrm{y}$ plane


Finally we put these two graphs together and we can see that the phantom graphs DO intersect at the points $( \pm 4 i \sqrt{3}, 8)$ marked as yellow points.


The two lower sections of the phantom hyperbolae do not intersect.
Here is a different view of the graphs...


