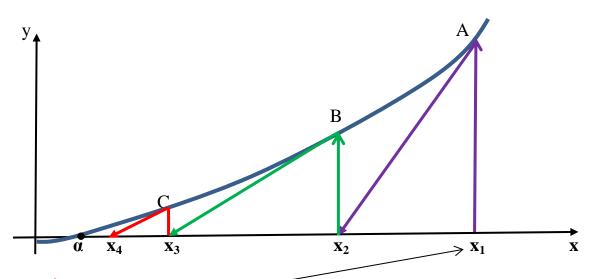
<u>The Newton-Raphson Method for finding approximate</u> <u>solutions of equations.</u>

Below is the graph of y = f(x) so the solution of f(x) = 0 is the point where the graph crosses the x axis at $x = \alpha$.

This diagram shows how the iterative process approaches the solution of the equation f(x) = 0.



The 1st approximation is x_1 . Draw a vertical line from x_1 to the curve meeting it at point A. A tangent is drawn from A meeting the x axis at the 2nd approximation x_2

Draw a vertical line from x_2 to the curve meeting it at point B. A tangent is drawn from B meeting the x axis at the 3rd approximation x_3

Draw a vertical line from x₃ to the curve meeting it at point C. A tangent is drawn from C meeting the x axis at the 4th approximation x₄

This process is continued until the approximation is deemed to be close enough to the solution $\mathbf{x} = \boldsymbol{\alpha}$

We can make a simple formula to do this process as follows.



The 1st approximation is \mathbf{x}_1 so the distance $\mathbf{PA} = \mathbf{f}(\mathbf{x}_1)$ The tangent at A is drawn which meets the x axis at Q where $\mathbf{x} = \mathbf{x}_2$ The distance **PQ** is $\mathbf{x}_1 - \mathbf{x}_2$ The gradient of the **tangent AQ** is $\frac{\mathbf{AP}}{\mathbf{PQ}} = \frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_1 - \mathbf{x}_2}$

Another expression for the gradient of the **tangent AQ** is the derivative of the curve y = f(x) at $x = x_1$. This is $f'(x_1)$

Equating these two expressions we get:

$$\frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_1 - \mathbf{x}_2} = \mathbf{f}'(\mathbf{x}_1)$$

so
$$\frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{f}'(\mathbf{x}_1)} = \mathbf{x}_1 - \mathbf{x}_2$$

and so
$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{f}'(\mathbf{x}_1)}$$

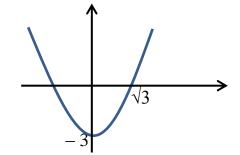
This is the iterative equation which we keep using:

$\mathbf{x}_3 = \mathbf{x}_2 - \frac{\mathbf{f}(\mathbf{x}_2)}{\mathbf{f}'(\mathbf{x}_2)}$	$x_4 = x_3 - \underline{f(x_3)}{f'(x_3)}$	$\mathbf{x}_5 = \mathbf{x}_4 - \frac{\mathbf{f}(\mathbf{x}_4)}{\mathbf{f}'(\mathbf{x}_4)}$

In general we say: $\mathbf{x}_{(n+1)} = \mathbf{x}_n - \frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}'(\mathbf{x}_n)}$

Example: This method is very good for finding square roots.

Suppose we want $\sqrt{3}$ We make an equation $x = \sqrt{3}$ so that $x^2 = 3$ Now we consider the graph $y = x^2 - 3$ so that the graph will cross the x axis at $\sqrt{3}$



Now we use: $\mathbf{x}_2 = \mathbf{x}_1 - \frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{f}'(\mathbf{x}_1)}$

It is sometimes a good idea to simplify this formula for the specific case but it is not compulsory.

$$x_2 = x - \frac{(x^2 - 3)}{2x} = \frac{2x^2 - (x^2 - 3)}{2x} = \frac{x^2 + 3}{2x}$$

let us choose the 1^{st} approximation $x_1 = 2$

so
$$x_2 = \frac{4+3}{4} = 1.75$$

x ₁ = 2	4+3	1.75
	4	
x ₂ =1.75	$1.75^2 + 3$	1.732142857
	2×1.75	
x ₃ =1.732142857	$1.732142857^2 + 3$	1.73205081
	2×1.732142857	
x ₄ =1.73205081	$1.73205081^2 + 3$	1.732050808
	2×1.73205081	

It is quite clear that this converges very quickly to at least 9 significant figures already!

Generally, to find \sqrt{N} just use $\mathbf{x}_{n+1} = \frac{\mathbf{x}_n^2 + \mathbf{N}}{2\mathbf{x}_n}$