This is a simple classroom poster to keep these concepts clear for students.
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NOTICE THESE THREE POINTS:

When the cubic has 2a MAXIMUM the 2" derivative is a NEGATIVE

number.

When the cubic has a MINIMUM the 2™ derivative is a POSITIVE
number.

When the cubic has an INFLECTION point the 2" derivative is ZERO.




This was a Question from the QUORA website:

Why is it that when f''(x) = o this represents a
point of inflection on the curve y=f(x)

. d?
NB Actually, the condition thatd—;; = 0 does not always mean that

the curve will have an inflection point. | will cover this point later.

A point of inflection is:

“a point where the gradient stops increasing and starts
decreasing”

OR the other way round:

“a point where the gradient stops decreasing and starts
Increasing”.

| will use the curve y = x(x — 3)* as an example...
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It should be noticed that CONCAVITY changes at inflection points.
Below | have drawn the curve:
y = (x +3)*(x - 3)°

which has two inflection points at x = +V3

Inflection points

concave up
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concave up >

Concave down if d%y >0 so 12x°-36 >0 ie x* > 3
dx?
The curve is CONCAVE DOWN for —V3<x<+3

You could just say that the curve is concave down if —V 3 <x<+ 3
because there is a Maximum point in between or if y''> 0.

| have prepared some very short video demonstrations showing how the
gradient changes from increasing to decreasing (or vice versa)

POINTS OF INFLECTION SCREENCAST VIDEOS
http://screencast.com/t/wnmfDn2Fcn
http://screencast.com/t/UHhMU9Gv
http://screencast.com/t/5BoY SOuN



http://screencast.com/t/wnmfDn2Fcn
http://screencast.com/t/UHhMU9Gv
http://screencast.com/t/5BoYS0uN
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| should also mention that % = 0 does not guarantee a point of inflection.
A good simple example isy = x*

dy_
dx

4x3
dZ
d—;;=12x2 —0ifx=0
But the curve has a minimum point not an inflection point!

Here is why!!!

Watch as the inflection points on the curve y = (X2 — az)2 slowly move together
as the value of “a” approaches zero and the curve becomes y = X

Vanishing points of inflection for y = x*

https://www.screencast.com/t/46szQdm3yW

Vanishing points of inflection (advanced)

http://screencast.com/t/VK9HMkewE

See diagrams below...


https://www.screencast.com/t/46szQdm3yW
http://screencast.com/t/vK9HMkewE
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Here I drew the graph of
y = (x* — a%)% starting witha =1

| have worked out that the 2 inflection

4
points are at (% ,43 )

| then started to reduce the value of a
and you can see the inflection points
are moving closer to each other.

The curve is still concave down
between the infection points

Herea=0.5

Herea=0.3

Herea=0.1

The curve is still concave down
between these infection points!!!

Finally a = 0 and the two inflection
points have coincided at (0, 0)

But actually they have vanished!
Because the curve is no longer
concave down!

The curve has finally become y = x
which has no inflection points even

dzy _
though —Z= 0
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