This is a simple classroom poster to keep these concepts clear for students.
$y=x(x-3)^{2}$
$=x^{3}-6 x^{2}+9 x$
(cubic curve)

$$
\begin{aligned}
& y^{\prime}=3 x^{2}-12 x+9 \\
&=3\left(x^{2}-4 x+3\right) \\
&=3(x-1)(x-3) \\
& \text { (parabola) }
\end{aligned}
$$

\qquad
$y^{\prime \prime}=6 x-12$
(line graph)

NOTICE THESE THREE POINTS:

When the cubic has a MAXIMUM the $2^{\text {nd }}$ derivative is a NEGATIVE number.
When the cubic has a MINIMUM the $2^{\text {nd }}$ derivative is a POSITIVE number.
When the cubic has an INFLECTION point the $2^{\text {nd }}$ derivative is ZERO.

This was a Question from the QUORA website:

Why is it that when $f^{\prime \prime}(x)=o$ this represents a point of inflection on the curve $y=f(x)$

NB Actually, the condition that $\frac{d^{2} y}{d x^{2}}=0$ does not always mean that the curve will have an inflection point. I will cover this point later.

A point of inflection is:

"a point where the gradient stops increasing and starts decreasing"

OR the other way round:
"a point where the gradient stops decreasing and starts increasing".

I will use the curve $\boldsymbol{y}=\boldsymbol{x}(\boldsymbol{x}-3)^{2}$ as an example...

Notice that for the RED part of this curve, the
gradient is decreasing

Notice that for the GREEN part of this curve, the gradient is increasing

Gradient decreasing

Gradient increasing

It should be noticed that CONCAVITY changes at inflection points.
Below I have drawn the curve:

$$
y=(x+3)^{2}(x-3)^{2}
$$

which has two inflection points at $\mathbf{x}= \pm \sqrt{\mathbf{3}}$

Concave down if $\frac{d^{2} y}{d x^{2}}>0$ so $12 x^{2}-36>0$ ie $x^{2}>3$
The curve is CONCAVE DOWN for $-\sqrt{ } 3<x<\sqrt{ } 3$
You could just say that the curve is concave down if $-\sqrt{ } 3<x<\sqrt{ } 3$ because there is a Maximum point in between or if $y^{\prime \prime}>0$.

I have prepared some very short video demonstrations showing how the gradient changes from increasing to decreasing (or vice versa)

POINTS OF INFLECTION SCREENCAST VIDEOS

http://screencast.com/t/wnmfDn2Fcn
http://screencast.com/t/UHhMU9Gv
http://screencast.com/t/5BoYSOuN

I should also mention that $\frac{d^{2} y}{d x^{2}}=\mathbf{0}$ does not guarantee a point of inflection.
A good simple example is $y=x^{4}$

$$
\begin{aligned}
& \frac{d y}{d x}=4 x^{3} \\
& \frac{d^{2} y}{d x^{2}}=12 x^{2}=0 \text { if } x=0
\end{aligned}
$$

But the curve has a minimum point not an inflection point!

Here is why!!!
Watch as the inflection points on the curve $y=\left(x^{2}-a^{2}\right)^{2}$ slowly move together as the value of " \boldsymbol{a} " approaches zero and the curve becomes $\boldsymbol{y}=\boldsymbol{x}^{4}$

Vanishing points of inflection for $y=x^{4}$

https://www.screencast.com/t/46szQdm3yW

Vanishing points of inflection (advanced)

http://screencast.com/t/vK9HMkewE

See diagrams below...

Here I drew the graph of $y=\left(x^{2}-a^{2}\right)^{2}$ starting with $a=1$

I have worked out that the 2 inflection points are at $\left(\frac{ \pm a}{\sqrt{3}}, \frac{4 a^{4}}{9}\right)$

I then started to reduce the value of \boldsymbol{a} and you can see the inflection points are moving closer to each other.

The curve is still concave down between the infection points

Here $\boldsymbol{a}=0.5$

Here $\boldsymbol{a}=\mathbf{0 . 3}$

Here $\boldsymbol{a}=\mathbf{0 . 1}$
The curve is still concave down between these infection points!!!

Finally $a=0$ and the two inflection points have coincided at $(0,0)$
But actually they have vanished! Because the curve is no longer concave down!
The curve has finally become $y=x^{4}$ which has no inflection points even though $\frac{d^{2} y}{d x^{2}}=0$

