How can there be TWO angles of projection which will result in the same range for a projectile?

The range is given by:

$$\mathbf{R} = \frac{\mathbf{V}^2 \mathbf{sin}(2\alpha)}{\mathbf{g}}$$

If the initial velocity, V is a constant then the only variable is the angle of projection α .

So let us concentrate on the term $\sin(2\alpha)$

Consider these pairs of angles:

The vertical red lines are the **sine values** of the marked angles when the hypotenuse is 1 unit.

If $2\alpha = 40$ or 140 then $\sin 40 = \sin 140$

This means if $\alpha = 20$ or 70 then the ranges R will be the same

If $2\alpha = 60$ or 120 then $\sin 60 = \sin 120$

This means if $\alpha = 30$ or 60 then the ranges R will be the same

If $2\alpha=80$ or 100 then sin80=sin100This means if $\alpha=40$ or 50 then the ranges R will be the same

The general result here is that the ranges will be equal for any two angles of projection which **add to 90.**

The following diagram gives the maximum range when the **initial velocity is 20 m/s** when the angle of projection is **45 degrees**.

The following diagrams show that when the angle of projection is either 60 degrees or 30 degrees, the range is the same in both cases.

10

 30^{0}